A method in model updating using Miscorrelation Index sensitivity

Kozak, Mustafa Tuğrul
Öztürk, Murat
Özgüven, Hasan Nevzat
This paper presents a new model updating method based on minimization of an index called Miscorrelation Index (MCI), which is introduced to localize the coordinates carrying error in a finite element (FE) model. MCI can be calculated from measured frequency response functions (FRFs) and dynamic stiffness matrix of the FE model for each coordinate as a function of frequency. Nonzero numerical values for MCI of a coordinate indicate errors in one or more elements of the system matrices corresponding to this coordinate. The sensitivity-cl riven model updating method presented in this study (MCI Sensitivity Method) is based on minimization of MCI. The application of the method is illustrated with four case studies. In the first and second examples a discrete system is considered, and computationally generated and polluted FRFs are used as pseudo-test data. In the third and fourth case studies, real test data is used and the performance of the method in practical applications is demonstrated on the benchmark structure built to simulate the dynamic behavior of an airplane, namely, GARTEUR SM-AG19 test bed. it is concluded that MCI Sensitivity Method yields successful results even when the measured responses of only a few coordinates are used, especially when miscorrelation is due to local errors.


A frequency domain nonparametric identification method for nonlinear structures: Describing surface method
Karaagacli, Taylan; Özgüven, Hasan Nevzat (Elsevier BV, 2020-10-01)
In this paper a new method called 'Describing Surface Method' (DSM) is developed for nonparametric identification of a localized nonlinearity in structural dynamics. The method makes use of the Nonlinearity Matrix concept developed in the past by using classical describing function theory, which assumes that nonlinearity depends mainly on the response amplitude and frequency dependence is negligible for almost all of the standard nonlinear elements. However, this may not always be the case for complex nonli...
A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2018-07-01)
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the n...
A novel modal superposition method with response dependent nonlinear modes for periodic vibration analysis of large MDOF nonlinear systems
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2020-01-01)
Design of complex mechanical structures requires to predict nonlinearities that affect the dynamic behavior considerably. However, finding the forced response of nonlinear structures is computationally expensive, especially for large ordered realistic finite element models. In this paper, a novel approach is proposed to reduce computational time significantly utilizing Response Dependent Nonlinear Mode (RDNM) concept in determining the steady state periodic response of nonlinear structures. The method is ap...
Identification of structural non-linearities using describing functions and the Sherman-Morrison method
Ozer, Mehmet Bulent; Özgüven, Hasan Nevzat; Royston, Thomas J. (Elsevier BV, 2009-01-01)
In this study, a new method for type and parametric identification of a non-linear element in an otherwise linear structure is introduced. This work is an extension of a previous study in which a method was developed to localize non-linearity in multi-degree of freedom systems and to identify type and parameters of the non-linear element when it is located at a ground connection of the system. The method uses a describing function approach for representing the non-linearity in the structure. The describing ...
An Efficient Formula Synthesis Method with Past Signal Temporal Logic
Ergurtuna, Mert; Aydın Göl, Ebru (2019-01-01)
In this work, we propose a novel method to find temporal properties that lead to the unexpected behaviors from labeled dataset. We express these properties in past time Signal Temporal Logic (ptSTL). First, we present a novel approach for finding parameters of a template ptSTL formula, which extends the results on monotonicity based parameter synthesis. The proposed method optimizes a given monotone criteria while bounding an error. Then, we employ the parameter synthesis method in an iterative unguided for...
Citation Formats
M. T. Kozak, M. Öztürk, and H. N. Özgüven, “A method in model updating using Miscorrelation Index sensitivity,” MECHANICAL SYSTEMS AND SIGNAL PROCESSING, pp. 1747–1758, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48167.