Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Enhancing the accuracy of the interpolations and anterpolations in MLFMA
Download
index.pdf
Date
2006-01-01
Author
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
108
downloads
Cite This
We present an efficient technique to reduce the interpolation and anterpolation (transpose interpolation) errors in the aggregation and disaggregation processes of the multilevel fast multipole algorithm (MLFMA), which is based on the sampling of the radiated and incoming fields over all possible solid angles, i.e., all directions on the sphere. The fields sampled on the sphere are subject to various operations, such as interpolation, aggregation, translation, disaggregation, anterpolation, and integration. We identify the areas on the sphere, where the highest levels of interpolation errors are encountered. The error is reduced by employing additional samples on such parts of the sphere. Since the interpolation error is propagated and amplified by every level of aggregation, this technique is particulary useful for large problems. The additional costs in the memory and processing time are negligible, and the technique can easily be adapted into the existing implementations of MLFMA.
Subject Keywords
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/40664
Journal
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
DOI
https://doi.org/10.1109/lawp.2006.885010
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-08-01)
We present fast and accurate solutions of large-scale scattering problems involving three-dimensional closed conductors with arbitrary shapes using the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA, scattering problems that are discretized with tens of millions of unknowns are easily solved on a cluster of computers. We extensively investigate the parallelization of MLFMA, identify the bottlenecks, and provide remedial procedures to improve the efficiency of the imp...
Derivation of length extension formulas for complementary sets of sequences using orthogonal filterbanks
Candan, Çağatay (Institution of Engineering and Technology (IET), 2006-11-23)
A method for the construction of complementary sets of sequences using polyphase representation of orthogonal filterbanks is presented. It is shown that the case of two-channel filterbanks unifies individually derived length extension formulas for complementary sequences into a common framework and the general M-channel case produces novel formulas for the extension of complementary sets of sequences. The presented technique can also be used to generate polyphase and multilevel sequences.
Clarification of issues on the closed-form Green's functions in stratified media
Aksun, MI; Dural Ünver, Mevlüde Gülbin (Institute of Electrical and Electronics Engineers (IEEE), 2005-11-01)
The closed-form Green's functions (CFGF), derived for the vector and scalar potentials in planar multilayer media, have been revisited to clarify some issues and misunderstandings on the derivation of these Green's functions. In addition, the range of validity of these Green's functions is assessed with and without explicit evaluation of the surface wave contributions. As it is well-known, the derivation of the CFGF begins with the approximation of the spectral-domain Green's functions by complex exponentia...
CBFEM-MPI: A Parallelized Version of Characteristic Basis Finite Element Method for Extraction of 3-D Interconnect Capacitances
Ozgun, Ozlem; Mittra, Raj; Kuzuoğlu, Mustafa (Institute of Electrical and Electronics Engineers (IEEE), 2009-02-01)
In this paper, we present a novel, non-iterative domain decomposition method, which has been parallelized by using the message passing interface (MPI) library, and used to efficiently extract the capacitance matrixes of 3-D interconnect structures, by employing characteristic basis functions (CBFs) in the context of the finite element method (FEM). In this method, which is Failed CBFEM-MPI, the computational domain is partitioned into a number of nonoverlapping subdomains in which the CBFs are constructed b...
3D object recognition from range images using transform invariant object representation
AKAGÜNDÜZ, erdem; Ulusoy, İlkay (Institution of Engineering and Technology (IET), 2010-10-28)
3D object recognition is performed using a scale and orientation invariant feature extraction method and a scale and orientation invariant topological representation. 3D surfaces are represented by sparse, repeatable, informative and semantically meaningful 3D surface structures, which are called multiscale features. These features are extracted with their scale (metric size and resolution) using the classified scale-space of 3D surface curvatures. Triplets of these features are used to represent the surfac...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. S. Ergül, “Enhancing the accuracy of the interpolations and anterpolations in MLFMA,”
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
, pp. 467–470, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40664.