A note on a theorem of Dwyer and Wilkerson

2001-01-03
We prove a version of Theorem 2.3 in [1] for the non-elementary abelian group Z(2) x Z(2n), n greater than or equal to 2. Roughly, we describe the equivariant cohomology of (union of) fixed point sets as the unstable part of the equivariant cohomology of the space localized with respect to suitable elements of the cohomology ring of Z(2) x Z(2n).
ARCHIV DER MATHEMATIK

Suggestions

An answer to a question of Cao, Reilly and Xiong
Ercan, Z.; Onal, S. (Institute of Mathematics, Czech Academy of Sciences, 2006-01-01)
We present a simple proof of a Banach-Stone type Theorem. The method used in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.
An abstract approach to Bohr's phenomenon
Aizenberg, L; Aytuna, A; Djakov, P (American Mathematical Society (AMS), 2000-01-01)
In 1914 Bohr discovered that there exists r is an element of (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1, then for \z\ < r the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. Our aim here is to present an abstract approach to the problem and show that Bohr's phenomenon occurs under very general conditions.
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
A generalisation of a theorem of Koldunov with an elementary proof
Ercan, Z (Institute of Mathematics, Czech Academy of Sciences, 1999-01-01)
We generalize a Theorem of Koldunov [2] and prove that a disjointness preserving quasi-linear operator between Resz spaces has the Hammerstein property.
A classification of equivariant principal bundles over nonsingular toric varieties
Biswas, Indranil; Dey, Arijit; Poddar, Mainak (World Scientific Pub Co Pte Lt, 2016-12-01)
We classify holomorphic as well as algebraic torus equivariant principal G-bundles over a nonsingular toric variety X, where G is a complex linear algebraic group. It is shown that any such bundle over an affine, nonsingular toric variety admits a trivialization in equivariant sense. We also obtain some splitting results.
Citation Formats
S. Öztürk, “A note on a theorem of Dwyer and Wilkerson,” ARCHIV DER MATHEMATIK, pp. 25–29, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40687.