Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An abstract approach to Bohr's phenomenon
Download
index.pdf
Date
2000-01-01
Author
Aizenberg, L
Aytuna, A
Djakov, P
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
217
views
53
downloads
Cite This
In 1914 Bohr discovered that there exists r is an element of (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1, then for \z\ < r the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. Our aim here is to present an abstract approach to the problem and show that Bohr's phenomenon occurs under very general conditions.
Subject Keywords
Applied Mathematics
,
General Mathematics
URI
https://hdl.handle.net/11511/66335
Journal
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
DOI
https://doi.org/10.1090/s0002-9939-00-05270-9
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
A formula for the joint local spectral radius
Emel'yanov, EY; Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We give a formula for the joint local spectral radius of a bounded subset of bounded linear operators on a Banach space X in terms of the dual of X.
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
A note on a theorem of Dwyer and Wilkerson
Öztürk, Semra (Springer Science and Business Media LLC, 2001-01-03)
We prove a version of Theorem 2.3 in [1] for the non-elementary abelian group Z(2) x Z(2n), n greater than or equal to 2. Roughly, we describe the equivariant cohomology of (union of) fixed point sets as the unstable part of the equivariant cohomology of the space localized with respect to suitable elements of the cohomology ring of Z(2) x Z(2n).
A ROBUST ITERATIVE SCHEME FOR SYMMETRIC INDEFINITE SYSTEMS
Manguoğlu, Murat (Society for Industrial & Applied Mathematics (SIAM), 2019-01-01)
We propose a two-level nested preconditioned iterative scheme for solving sparse linear systems of equations in which the coefficient matrix is symmetric and indefinite with a relatively small number of negative eigenvalues. The proposed scheme consists of an outer minimum residual (MINRES) iteration, preconditioned by an inner conjugate gradient (CG) iteration in which CG can be further preconditioned. The robustness of the proposed scheme is illustrated by solving indefinite linear systems that arise in t...
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Aizenberg, A. Aytuna, and P. Djakov, “An abstract approach to Bohr’s phenomenon,”
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
, pp. 2611–2619, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66335.