Instability of a Noncrystalline NaO2 Film in Na-O-2 Batteries: The Controversial Effect of the RuO2 Catalyst

Tovini, Mohammad Fathi
Hong, Misun
Park, Jiwon
Demirtas, Merve
Toffoli, Daniele
Toffoli, Hande
Byon, Hye Ryung
The unique electrochemical and chemical features of sodium-oxygen (Na-O-2) batteries distinguish them from the lithium- oxygen (Li-O-2) batteries. NaO2 as the main discharge product is unstable in the cell environment and chemically degrades, which triggers side products' formation and charging potential increment. In this study, RuO2 nanoparticles dispersed on carbon nanotubes (CNTs) are used as the catalyst for Na-O-2 batteries to elucidate the effect of the catalyst on these complex electrochemical systems. The RuO2 CNT contributes to the formation of a poorly crystalline and coating-like NaO2 structure during oxygen reduction reaction, which is drastically different from the conventional micron-sized cubic NaO2 crystals deposited on the CNT. Our findings demonstrate a competition between NaO2 and side products' decompositions for RuO2/CNT during oxygen evolution reaction (OER). We believe that this is due to the lower stability of a coating-like NaO2 because of its noncrystalline nature and high electrode/electrolyte contact area. Although RuO2/CNT catalyzes the decomposition of side products at a lower potential (3.66 V) compared to CNT (4.03 V), it cannot actively contribute to the main electrochemical reaction of the cell during OER (NaO2 -> Na+ + O-2 + e(-)) because of the fast chemical degradation of the film NaO2 to the side products. Therefore, tuning the morphology and crystallinity of NaO2 by a catalyst is detrimental for the Na-O-2 cell performance and it should be taken into account for the future applications.


Stability and degradation of plasma deposited boron nitride thin films in ambient atmosphere
Anutgan, Tamila Aliyeva; Anutgan, Mustafa; Atilgan, Ismail; Katircioglu, Bayram (Elsevier BV, 2009-11-02)
Boron nitride (BN) thin films were deposited at 296 K, 398 K, 523 K and 623 K by low power radio frequency plasma enhanced chemical vapor deposition with nitrogen (N-2.) and hydrogen diluted diborane (15% B2H6 in H-2) source gases. Fourier transform infrared and UV-visible spectroscopies were used to investigate the stability and degradation of BN films under ambient air conditions. The action of moisture on the films is reduced with increasing substrate temperature (T-s) to the detriment of the film growth...
Temperature-Induced Activation of Graphite Co-intercalation Reactions for Glymes and Crown Ethers in Sodium-Ion Batteries
Goktas, Mustafa; Akduman, Baris; Huang, Peihua; Balducci, Andrea; Adelhelm, Philipp (American Chemical Society (ACS), 2018-11-29)
The intercalation of solvated ions into graphite leads to ternary graphite intercalation compounds (t-GICs). Here, we study the impact of temperature on the electro-chemical activity of graphite electrodes for co-intercalation reactions between 20 and 80 degrees C in sodium cells. For this, a range of linear ethers (mono-, di-, tri-, and tetraglyme) are studied. For the first time, pentaglyme and several crown ethers are also investigated. We find that several solvents that appear as unsuitable for the co-i...
Photocatalytic Conversion of Nitric Oxide on Titanium Dioxide: Cryotrapping of Reaction Products for Online Monitoring by Mass Spectrometry
Lu, Weigang; Olaitan, Abayomi D.; Brantley, Matthew R.; Zekavat, Behrooz; Altunöz Erdoğan, Deniz; Ozensoy, Emrah; Solouki, Touradj (American Chemical Society (ACS), 2016-04-21)
Details of coupling a catalytic reaction chamber to a liquid nitrogen-cooled cryofocuser/triple quadrupole mass spectrometer for online monitoring of nitric oxide (NO) photocatalytic reaction products are presented. Cryogenic trapping of catalytic reaction products, via cryofocusing prior to mass spectrometry analysis, allows unambiguous characterization of nitrous oxide (N2O) and nitrogen oxide species (i.e., NO and nitrogen dioxide (NO2)) at low concentrations. Results are presented, indicating that the m...
Conjugation effects on carrier mobilities of polythiophenes probed by time-resolved terahertz spectroscopy
Esentürk, Okan; Deongchamp, Dean M.; Heilweil, Edwin J. (American Chemical Society (ACS), 2008-07-24)
Optically generated carrier conductivity of thiophene-based spin-cast polymer films, as cast poly(3-hexylthiophene) (P3HT) and both as cast and above liquid crystalline temperature annealed poly(2,5-bis(3tetradecylthiophen-2yl)thieno[3,2-b]thiophene) (PBTTT), were measured by time-resolved THz spectroscopy (TRTS) and compared to reported thin-film transistor (TFT) device measurements. The relative mobilities of the samples measured by TRTS agree well with reported TFl` mobilities. Since TRTS is sensitive to...
Interaction of BrPDI, BrGly, and BrAsp with the Rutile TiO2(110) Surface for Photovoltaic and Photocatalytic Applications: A First-Principles Study
Cakir, D.; GÜLSEREN, Oğuz; METE, ERSEN; Ellialtıoğlu, Süleyman Şinasi (American Chemical Society (ACS), 2011-05-12)
The adsorption of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) on the defect-free unreconstructed (UR) rutile TiO2(110) surface has been studied using total energy pseudopotential calculations based on density functional theory. All dye molecules form moderate chemical bonds with the defect-free UR rutile (110) surface in the most stable adsorption configurations. Electronic structure analysis reveals that HOMO and LUMO levels of the adsorbed dye molecules appear within the band gap a...
Citation Formats
M. F. Tovini et al., “Instability of a Noncrystalline NaO2 Film in Na-O-2 Batteries: The Controversial Effect of the RuO2 Catalyst,” JOURNAL OF PHYSICAL CHEMISTRY C, pp. 19678–19686, 2018, Accessed: 00, 2020. [Online]. Available: