Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
All-Organic Electrochromic Supercapacitor Electrodes
Date
2015-01-01
Author
YÜKSEL, Recep
CEVHER, ŞEVKİ CAN
Çırpan, Ali
Toppare, Levent Kamil
Ünalan, Hüsnü Emrah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
236
views
0
downloads
Cite This
The need for determining the instant capacity of an energy storage device has led to the integration of an indicator gauge in batteries. Consumers only have to press the contact points on the battery to activate a thermochromic indicator, which measures the heat resistance of the device. This can be implemented in a supercapacitor through electrochromism, eliminating the necessity to press on the contact points. With this motivation, here we report on the fabrication and characterization of all-organic multichromatic electrodes for supercapacitors. A new conducting polymer (CP) has emerged as a promising active material both for its electrochromic and electrochemical properties combined in a single device, where single walled carbon nanotube (SWNT) thin films are used as the current collectors. CP experiences reversible and rapid multiple color changes with respect to its charged state. The specific capacitance of the SWNT/CP nanocomposite electrodes was found to be 112.4 F/g at a current density of 1 A/g. The power density can reach 16.6 kW/kg and electrodes show good capacity retention (82%) upon cycling for 12500 times. Fabricated all-organic supercapacitor electrodes simply integrate electrochromism and energy storage in one device and this structure holds high potential for the development of smart supercapacitors. (C) 2015 The Electrochemical Society. All rights reserved.
Subject Keywords
Renewable Energy, Sustainability and the Environment
,
Electrochemistry
,
Materials Chemistry
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/36877
Journal
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
DOI
https://doi.org/10.1149/2.0881514jes
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Metamaterial Absorber Based Multifunctional Sensors
Sabah, Cumali (The Electrochemical Society, 2016-01-01)
In this paper, several important applications of a metamaterial absorber (MA) based sensors such as temperature, pressure, moisture, and density are presented. Since the sensing ability mostly considers the resonance frequency, the frequency range where the resonance shifts occur linearly or non-linearly depending on the temperature, pressure, moisture, and density changes is selected carefully. The model is composed of X shaped resonators (XSR), dielectric substrate, the sensing layer, dielectric substrate...
Silver Nanowire/Conducting Polymer Nanocomposite Electrochromic Supercapacitor Electrodes
YÜKSEL, Recep; COŞKUN, Sahin; Günbaş, Emrullah Görkem; Çırpan, Ali; Toppare, Levent Kamil; Ünalan, Hüsnü Emrah (The Electrochemical Society, 2017-01-01)
Color-changing energy storage devices that can easily communicate with the user carry the potential to be integrated into smart electronics. In this work, nanocomposite electrochromic supercapacitor electrodes were fabricated with silver nanowire (Ag NW) network electrodes and a green to transmissive electrochromic polymer, PDOPEQ. High transparency and conductivity of Ag NW network current collectors allowed the fabrication of electrochromic supercapacitors and investigation of the spectroelectrochemical a...
Experimental investigation on the electrocatalytic behavior of Ag-based oxides, Ag2XO4 (X= Cr, Mo, W), for the oxygen reduction reaction in alkaline media
Hamat, Burcu Arslan; Aydınol, Mehmet Kadri (Elsevier BV, 2020-10-01)
The oxygen reduction (ORR) is one of the most essential electrochemical reactions for the development of promising energy storage and conservation technologies such as metal-air batteries and fuel cells. The slow kinetics of oxygen reactions; however, limits the use of metal-air batteries and fuel cells in demanding applications. The aim of this study is to investigate the electrochemical activity of Ag-based oxides, Ag2XO4 (where X = Cr, Mo, and W), to be used as a catalyst material in these applications. ...
Microfluidic and Fuel Adulteration Sensing by Using Chiral Metamaterial Sensor
BAKIR, MEHMET; KARAASLAN, MUHARREM; Unal, Emin; Karadag, Faruk; Alkurt, Fatih Ozkan; ALTINTAŞ, OLCAY; Dalgac, Sekip; Sabah, Cumali (The Electrochemical Society, 2018-08-08)
In this study, Chiral Metamaterial Sensor (CMS), which is designed by utilizing a Split Ring Resonators (SRR) has been employed to reveal the two different types of sensor applications by experimentally and numerically. These applications include purity demonstration of methanol, ethanol and isopropyl alcohol (IPA) and fuel adulteration applications for petrol. All of the validations have been realized by measuring the complex permittivity values and reflection coefficients by using a vector network analyze...
First-principles design of efficient solar cells using two-dimensional arrays of core-shell and layered SiGe nanowires
Pekoz, R.; Malcıoğlu, Osman Barış; Raty, J. -Y. (American Physical Society (APS), 2011-01-20)
Research for third generation solar cell technology has been driven by the need to overcome the efficiency and cost problems encountered by current crystalline Si- and thin-film-based solar cells. Using first-principles methods, Ge/Si and Si/Ge core/shell and Si-Ge layered nanowires are shown to possess the required qualities for an efficient use in photovoltaic applications. We investigate the details of their band structure, effective mass, absorption property, and charge-carrier localization. The strong ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. YÜKSEL, Ş. C. CEVHER, A. Çırpan, L. K. Toppare, and H. E. Ünalan, “All-Organic Electrochromic Supercapacitor Electrodes,”
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36877.