Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase
Date
2001-07-01
Author
Çalık, Pınar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
The metabolic fluxes through the central carbon pathways were calculated for the genus Bacillus separately for the enzymes serine alkaline protease (SAP), neutral protease (NP) and alpha -amylase (AMY) on five carbon sources that have different reduction degrees (gamma), to determine the theoretical ultimate limits of the production capacities of Bacillus species and to predict the selective substrate for the media design. Glucose (gamma = 4.0), acetate (gamma = 4.0), and the TCA cycle organic-acids succinate (gamma = 3.5), malate (gamma = 3.0), and citrate (gamma = 3.0) were selected for the theoretical analyses and comparisons. A detailed mass flux balance-based general stoichiometric model based on the proposed metabolic reaction network starting with the alternative five carbon sources for the synthesis of each enzyme in Bacillus licheniformis that simulates the behaviour of the metabolic pathways with 107 metabolites and 150 reaction fluxes is developed. Highest and lowest specific cell growth rates (mu) were calculated as 1.142 and 0.766 h(-1), respectively, when glucose that has the highest degree of reduction and citrate that has the lowest degree of reduction were used as the carbon sources. Highest and lowest SAP, NP and AMY synthesis rates were also obtained, respectively, when glucose and citrate were used. Metabolic capacity analyses showed that the maximum SAP, NP, and AMY synthesis rates were, respectively, 0.0483, 0.0215 and 0.0191 mmol g(-1) DW h(-1) when glucose uptake rate was 10 mmol g(-1) DW h(-1) and specific growth rate was zero. The amino acid compositions and the molecular weights of the enzyme influence the production yield and selectivity. For SAP and NP oxaloacetate and pyruvate, for AMY oxaloacetate appear to be the critical main branch points. Consequently, for SAP and NP syntheses the fluxes towards the alanine group and aspartate group, and for AMY synthesis the flux towards the aspartate group amino acids need to be high. The results encourage the discussion of the potential strategies for improving productions of SAP, NP and AMY.
Subject Keywords
Biotechnology
,
Environmental Engineering
,
Bioengineering
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/40867
Journal
BIOCHEMICAL ENGINEERING JOURNAL
DOI
https://doi.org/10.1016/s1369-703x(00)00136-4
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability
Bayramoglu, Guelay; Kiralp, Senem; Yilmaz, Meltem; Toppare, Levent Kamil; Arica, M. Yakup (Elsevier BV, 2008-02-15)
Amino groups containing magnetic beads were used in covalent immobilization of the enzyme "chloroperoxidase (CPO)" which is one of a few enzymes that can catalyse the peroxide dependent oxidation of a wide spectrum of organic and inorganic compounds. The magnetic poly(glycidylmethacrylate-methylmethacrylate-etbyleneglycol dimethacrylate), magnetic p(GMA-MMA-EGDMA) beads were prepared via suspension polymerization in the presence of ferric ions. The magnetic beads were characterized with scanning electron mi...
Analyses of extracellular protein production in Bacillus subtilis - II: Responses of reaction network to oxygen transfer at transcriptional level
KOCABAŞ, PINAR; ÇALIK GARCİA, GÜZİDE; Çalık, Pınar; Ozdamar, Tuncer H. (Elsevier BV, 2017-11-15)
Oxygen transfer influences intracellular fluxes which are orchestrated by genome and its transcription in Bacillus subtilis throughout fermentation in recombinant human growth hormone (rhGH) production. Responses of B. subtilis reaction network to oxygen transfer were analysed at transcriptional level with determined transcriptome and calculated intracellular fluxes by the reconstructed genome scale model iBsu1144(rhGH) based on updated gene-enzyme-reaction data. iBsu1144(rhGH) employing 1067 reactions link...
Glucose isomerase production on a xylan-based medium by Bacillus thermoantarcticus
Çalık, Pınar; Haykir, Nazife Isik; BOYACI, İSMAİL HAKKI (Elsevier BV, 2009-01-15)
Effects of medium components on intracellular glucose isomerase (GI) production were investigated by Bacillus thermoantarcticus. The highest GI activity was obtained as 1630 U dm(-3) in the medium containing (g dm(-3)): 10.6, birchwood-xylan: 5.6, yeast extract: 5.9 (NH(4))(2)SO(4) at T = 55 C in 33 cm(-3) shake-flasks. When birchwood-xylan was replaced with oat spelt- or beechwood-xylan, GI activity decreased to 1372 and 1308 U dm(-3). respectively. Effects of pH at uncontrolled-pH (pH(UC) = 6.0) and contr...
Analyses of extracellular protein production in Bacillus subtilis - I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data
KOCABAŞ, PINAR; Çalık, Pınar; ÇALIK GARCİA, GÜZİDE; Ozdamar, Tuncer H. (Elsevier BV, 2017-11-15)
Bacillus subtilis genome-scale model (GEM) reconstruction was stimulated by the recent sequencing and consequent re-annotations. The updated gene-enzyme-reaction data were collected from databases to reconstruct B. subtilis reaction network BsRN-2016 containing 1144 genes linked to 1955 reactions and 1103 metabolites. Thermodynamic analysis was conducted to identify reversibility and directionality of the reactions. By elimination of unconnected-reactions from BsRN-2016, reconstruction process of the first ...
Metabolic Flux Analysis for Recombinant Protein Production by Pichia pastoris Using Dual Carbon Sources: Effects of Methanol Feeding Rate
Celik, Eda; Çalık, Pınar; Oliver, Stephen G. (Wiley, 2010-02-01)
The intracellular metabolic fluxes through the central carbon pathways in the bioprocess for recombinant human erythropoietin (rHuEPO) production by Pichia pastoris (Mut(+)) were calculated. to investigate the metabolic effects of dual carbon sources (methanol/sorbitol) and the methanol feed rate, and to obtain a deeper understanding the regulatory circuitry of P. pastoris, using the established stoichiometry-based model containing 102 metabolites and 141 reaction fluxes. Four fed-batch operations with (MS-...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Çalık, “Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase,”
BIOCHEMICAL ENGINEERING JOURNAL
, pp. 61–81, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40867.