Hide/Show Apps

The Effect of Calcined Colemanite Addition on the Mechanical Strength of Magnetite Pellets Produced with Organic Binders

Arol, Ali İhsan
Eisele, Timothy
Kawatra, S. Komar
Iron ore pellets must have sufficient mechanical strengths against degradation in all stages of pellet production. Low strength is also a problem for product pellets since they abrade during transportation to the reduction furnaces. The use of a binder is necessary to provide sufficient strength to the pellets and for better operation and handling of pellets. Bentonite is the standard binder in the industry; however, it is considered an impurity due to its acid oxide contents. Organic binders have been tested for many years as alternative binder to bentonite. They have been found to give sufficient wet pellet properties. However, they failed to provide sufficient strength to the preheated and fired pellets due to lack of slag bonding. It has been assumed that one possible effective method to improve the preheated and fired pellet strengths is addition of a slag-bonding constituent. In this study, calcined colemanite was added to the pellet feed to overcome the lower strength problem encountered with organic binder use. The strength of pellets produced with organic binders and calcined colemanite alone and in combination was comparatively studied against the strength of pellets made with standard bentonite binder in magnetite concentrate pelletizing. The results showed that addition of calcined colemanite into the pellet mixture improved the preheated and fired pellet strengths of pellets produced with organic binders.