Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
RHex: A simple and highly mobile hexapod robot
Download
index.pdf
Date
2001-07-01
Author
Saranlı, Uluç
KODITSCHEK, DE
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
380
views
0
downloads
Cite This
In this paper, the authors describe the design and control cf, RHex, a power autonomous, untethered, compliant-legged hexapod robot. RHex has only six actuators-one motor located at each hip-achieving mechanical simplicity that promotes reliable and robust operation in real-world tasks. Empirically stable and highly maneuverable locomotion arises from a very simple clock-driven, open-loop tripod gait. The legs rotate full circle, thereby preventing the common problem of toe stubbing in the protraction (swing) phase. An extensive suite of experimental results documents the robot's significant "intrinsic mobility"-the traversal of rugged, broken, and obstacle-ridden ground without any terrain sensing or actively controlled adaptation. RHex achieves fast and robust forward locomotion traveling at speeds up to one body length per second and traversing height variations well exceeding its body clearance.
Subject Keywords
Biomimesis
,
Autonomy
,
Mobility
,
Clock driven
,
Egged locomotion
,
Hexapod robot
URI
https://hdl.handle.net/11511/41015
Journal
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
DOI
https://doi.org/10.1177/02783640122067570
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
RHex: A biologically inspired hexapod runner
ALTENDORFER, R; MOORE, N; Komsuolu, H; BUEHLER, M; BROWN, HB; MCMORDIE, D; Saranlı, Uluç; FULL, R; KODITSCHEK, DE (2001-11-01)
RHex is an untethered, compliant leg hexapod robot that travels at better than one body length per second over terrain few other robots can negotiate at all. Inspired by biomechanics insights into arthropod locomotion, RHex uses a clock excited alternating tripod gait to walk and run in a highly maneuverable and robust manner. We present empirical data establishing that RHex exhibits a dynamical ("bouncing") gait-its mass center moves in a manner well approximated by trajectories from a Spring Loaded Invert...
Multi-point contact models for dynamic self-righting of a hexapod
Saranlı, Uluç; KODITSCHEK, DE (2004-07-13)
In this paper, we report on the design of a model-based controller that can achieve dynamical self-righting of a hexapod robot. Extending on our earlier work in this domain, we introduce a tractable multi-point contact model with Coulomb friction. We contrast the singularities inherent to the new model with other available methods and show that for our specific application, it yields dynamics which are well-defined. We then present a feedback controller that achieves "maximal" performance under morphologica...
Multi-point contact models for dynamic self-righting of a Hexapod
Saranlı, Uluç; Koditschek, Daniel E. (2005-01-01)
In this paper, we report on the design of a model-based controller that can achieve dynamical self-righting of a hexapod robot. Extending on our earlier work in this domain, we introduce a tractable multi-point contact model with Coulomb friction. We contrast the singularities inherent to the new model with other available methods and show that for our specific application, it yields dynamics which are well-defined. We then present a feedback controller that achieves "maximal" performance under morphologica...
Multi-band metamaterial absorber topology for infrared frequency regime
Mulla, Batuhan; Sabah, Cumali (2017-02-01)
In this paper, a new multiband metamaterial absorber design is proposed and the numerical characterization is carried out. The design is composed of three layers with differently sized quadruplets in which the interaction among them causes the multiband absorption response in the infrared frequency regime. In order to characterize the absorber. and explain the multiband topology, some parametric studies with respect to the dimensions of the structure are carried out and the contributions of the quadruplets ...
Proprioception based behavioral advances in a hexapod robot
Komsuoglu, H; McMordie, D; Saranlı, Uluç; Moore, N; Buehler, M; Koditschek, DE (2001-01-01)
We report on our progress in extending the behavioral repertoire of R.Hex, a compliant leg hexapod robot. We introduce two new controllers, one for climbing constant slope inclinations and one for achieving higher speeds via pronking. a gait that incorporates a substantial aerial phase. In both cases, we, make use of an underlying open-loop control strategy, combined with low bandwidth feedback to modulate its parameters. The inclination behavior arises from our initial alternating tripod walking controller...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Saranlı and D. KODITSCHEK, “RHex: A simple and highly mobile hexapod robot,”
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
, pp. 616–631, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41015.