A strange recursion operator for a new integrable system of coupled Korteweg-de Vries equations

2004-08-01
Karasu, A
Karasu, Atalay
Sakovich, SY
A recursion operator is constructed for a new integrable system of coupled Korteweg de Vries equations by the method of gauge-invariant description of zero-curvature representations. This second-order recursion operator is characterized by unusual structure of its nonlocal part.
ACTA APPLICANDAE MATHEMATICAE

Suggestions

A model for the computation of quantum billiards with arbitrary shapes
Erhan, Inci M.; Taşeli, Hasan (Elsevier BV, 2006-10-01)
An expansion method for the stationary Schrodinger equation of a three-dimensional quantum billiard system whose boundary is defined by an arbitrary analytic function is introduced. The method is based on a coordinate transformation and an expansion in spherical harmonics. The effectiveness is verified and confirmed by a numerical example, which is a billiard system depending on a parameter.
A ROBUST ITERATIVE SCHEME FOR SYMMETRIC INDEFINITE SYSTEMS
Manguoğlu, Murat (Society for Industrial & Applied Mathematics (SIAM), 2019-01-01)
We propose a two-level nested preconditioned iterative scheme for solving sparse linear systems of equations in which the coefficient matrix is symmetric and indefinite with a relatively small number of negative eigenvalues. The proposed scheme consists of an outer minimum residual (MINRES) iteration, preconditioned by an inner conjugate gradient (CG) iteration in which CG can be further preconditioned. The robustness of the proposed scheme is illustrated by solving indefinite linear systems that arise in t...
A formula for the joint local spectral radius
Emel'yanov, EY; Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We give a formula for the joint local spectral radius of a bounded subset of bounded linear operators on a Banach space X in terms of the dual of X.
A class of orthogonal polynomials suggested by a trigonometric Hamiltonian : Symmetric states
Taşeli, Hasan (Springer Science and Business Media LLC, 2004-05-01)
A new subclass of the Jacobi polynomials arising in the exact analytical solution of the one-dimensional Schrodinger equation with a trigonometric potential has been introduced. The polynomials which consist of a free parameter are not ultraspherical polynomials and have been simply named the T - polynomials since they are generated by a trigonometric Hamiltonian. In certain sense, it is shown that the T - polynomials can be regarded as a generalisation of the airfoil polynomials or the Chebyshev polynomial...
A finite element variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Society for Industrial & Applied Mathematics (SIAM), 2005-01-01)
This paper presents a variational multiscale method (VMS) for the incompressible Navier-Stokes equations which is defined by a large scale space L-H for the velocity deformation tensor and a turbulent viscosity nu(T). The connection of this method to the standard formulation of a VMS is explained. The conditions on L-H under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier - Stokes equations are studied. Numerical tests with the Smagorinsky ...
Citation Formats
A. Karasu, A. Karasu, and S. Sakovich, “A strange recursion operator for a new integrable system of coupled Korteweg-de Vries equations,” ACTA APPLICANDAE MATHEMATICAE, pp. 85–94, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41107.