Organosilanols as Catalysts in Asymmetric Aryl Transfer Reactions

2005-03-01
Özçubukçu, Salih
BOLM, Carsten
Various ferrocene-based organosilanols have been synthesized in four steps starting from achiral ferrocene carboxylic acid. Applying these novel planar-chiral ferrocenes as catalysts in asymmetric phenyl transfer reactions to substituted benzaldehydes afforded products with high enantiomeric excesses. The best result (91% ee) was achieved in the addition to p-chlorobenzaldehyde with organosilanol 2b, which has a tert-butyl substituent on the oxazoline ring and an isopropyl group on the silanol fragment.
Organic Letters

Suggestions

Benzaldehyde lyase-catalyzed enantioselective carboligation of aromatic aldehydes with mono- and dimethoxy acetaldehyde
Demir, Ayhan Sıtkı; Sesenoglu, O; Dunkelmann, P; Muller, M (American Chemical Society (ACS), 2003-06-12)
Benzaldehyde lyase from the Pseudomonas fluorescens catalyzes the reaction of aromatic aldehydes with methoxy and dimethoxy acetaldehyde and furnishes (R)-2-hydroxy-3-methoxy-1-arylpropan-1-one and (R)-2-hydroxy-3,3-dimethoxy-1-arylpropan-1-one in high yields and enantiomeric excess via acyloin linkage. Aromatic aldehydes and benzoins are converted into enamine-carbanion-like intermediates prior to carboligation.
Functionalization of oxabenzonorbornadiene: Manganese(III)-mediated oxidative addition of dimedone
ÇALIŞKAN, Raşit; Sari, Ozlem; Balcı, Metin (Wiley, 2017-09-01)
3-Chloro-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-2-yl)-3-hydroxy-5,5-dimethylcy-clohex- 2-en-1-one, synthesized by the reaction of oxabenzonorbornadiene with Mn(OAc)(3) and dimedone in the presence of HCl in acetic acid, was submitted to ring-opening reactions with BBr3 and H2SO4. Reaction with BBr3 yielded 2 products, a 5-membered ring and an 8-membered ring, with the former being the major product. However, the H2SO4-supported reaction exclusively formed an 8-membered ring. The mechanism of formation of th...
Amination/annulation of chlorobutenones with chiral amine compounds: synthesis of 1,2,4-trisubstituted pyrroles
Demir, Ayhan Sıtkı; Igdir, AC; Gunay, NB (Elsevier BV, 2005-10-03)
A series of 1,2,4-trisubstituted pyrroles have been synthesized in 83-96% yields on treatment of chiral primary amines, amino alcohols and esters of alpha-amino acids with different chlorobutenones in benzene-triethylamine. The conversions proceed without racemization.
Enantioselective synthesis of 2-(2-arylcyclopropyl)glycines: Conformationally restricted homophenylalanine analogs
Demir, Ayhan Sıtkı; Sesenoglu, O; Ulku, D; Arici, C (Wiley, 2004-01-01)
Starting from simple aromatic aldehydes and acetylfuran, (E)-1-(furan-2-yl)-3-arylprop-2-en-1-ones (2) were synthesized in high yields. Cyclopropanation of the C=C bond with trimethylsulfoxonium iodide (Me3SO+I-) furnished (furan-2-yl)(2-arylcyclopropyl)methanones 3 in 90-97% yields. Selective conversion of cyclopropyl ketones to their (E)- and (Z)-oxime ethers 5 and oxazaborolidine-catalyzed stercoselective reduction of the C-N bond followed by separation of the formed diastereoisomers, furnished (2-arylcy...
Mechanistic Insights into the Reaction of N-Propargylated Pyrrole- and Indole-Carbaldehyde with Ammonia, Alkyl Amines, and Branched Amines: A Synthetic and Theoretical Investigation
Sari, Ozlem; Seybek, Ali Fatih; Kaya, Serap; Menges, Nurettin; ERDEM, SAFİYE; BALCI, METİN (Wiley, 2019-09-01)
The reaction of pyrrole- and indole-carbaldehydes having a propargyl group attached to the nitrogen atom with various amines was studied. The reaction with ammonia formed pyrrolo[1,2-a]pyrazine and pyrazino[1,2-a]indole while the reaction with alkylamines such as methyl, ethyl, hexyl, and benzylamines formed the corresponding pyrazinone derivatives. Unexpectedly, the reaction with allylamine and propargylamine formed pyrazine derivatives in which the allyl and propargyl groups were removed from the molecule...
Citation Formats
S. Özçubukçu and C. BOLM, “Organosilanols as Catalysts in Asymmetric Aryl Transfer Reactions,” Organic Letters, pp. 1407–1409, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41145.