Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Sentiment Enhanced Hybrid TF-IDF for Microblogs
Date
2014-12-05
Author
Simsek, Atakan
Karagöz, Pınar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
0
downloads
As the usage of social networks grows day by day, a single person can reach hundreds or thousands of people in a minute. Microblogging is the new era of social communication, which can be used anywhere thanks to mobile phones. People spend hours and use social networks extensively, expressing their feelings, interests and dislikes. If this data can be extracted and analyzed effectively; useful items, news or people can be recommended. There are high number of studies that extract keywords from texts in order to obtain such information, however, microblogs have noisy text blocks, and hence regular text extraction algorithms fail to produce successful results. In this work, we propose a new approach, sentiment supported hybrid TF-IDF, in order to extract keywords to represent a user's profile more effectively. According to experimental results conducted under 50 different twitter accounts with 3 human judges, the proposed approach outperforms previous similar techniques in terms of profile constructions through keywords.
Subject Keywords
Microblogs
,
Keyword
,
Extraction
,
User
,
Profiling
URI
https://hdl.handle.net/11511/41249
DOI
https://doi.org/10.1109/bdcloud.2014.60
Collections
Department of Computer Engineering, Conference / Seminar