Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN)

2016-10-18
Karthikeyan, Smruthi
Kurt, Zöhre
Pandey, Gunjan
Spain, Jim C.
Accurate and convenient detection of explosive components is vital for a wide spectrum of applications ranging from national security and demilitarization to environmental monitoring and restoration. With the increasing use of DNAN as. a replacement for 2,4,6-trinitrotoluene (TNT) in insensitive explosive formulations, there has been a growing interest in strategies to minimize its release and to understand and predict its behavior in the environment. Consequently, a convenient tool. for its detection and destruction could enable development of More effective decontamination and demilitarization strategies. Biosensors and biocatalysts have limited applicability to the more traditional explosives because of the inherent limitations of the relevant enzymes. Here, we report a highly specific, convenient and robust biocatalyst based on a novel ether hydrolase enzyme, DNAN demethylase (that requires no cofactors), from a Nocardioides strain that can mineralize DNAN. Biogenic silica encapsulation was used to stabilize the enzyme and enable it to be packed into a Model microcolumn for application as a biosensor or as a bioreactor for continuous destruction of DNAN. The immobilized enzyme was stable and not inhibited by other insensitive munitions constituents. An alternative method for DNAN detection involved coating the encapsulated enzyme on cellulose filter paper. The hydrolase based biocatalyst could provide the basis for a wide spectrum of applications including detection, identification; destruction Or inertion of explosives containing DNAN (demilitarization operations), and for environmental restorations.
ENVIRONMENTAL SCIENCE & TECHNOLOGY

Suggestions

Time Weighted Average Concentration Monitoring Based on Thin Film Solid Phase Microextraction
Ahmadi, Fardin; Sparham, Chris; Boyacı, Ezel; Pawliszyn, Janusz (American Chemical Society (ACS), 2017-04-04)
Time weighted average (TWA) passive sampling with thin film solid: phase micro extraction (TF-SPME) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for collection, identification, and quantification of benzophenone-1, benzophenone-2, benzophenone-3, benzophenone-4, 2-phenylbenzimidazole-5-sulfonic acid, octocrylene, octylmethoxycinnamate, butylmethoxydibenzgylmethane, triclocarban and triclosan in the aquatic environment. Two types of TF-SPME passive samplers, including a retracted th...
Gold-assembled silica-coated cobalt nanoparticles as efficient magnetic separation units and surface-enhanced Raman scattering substrate
Yıldırım, Lütfiye Sezen; Volkan, Mürvet (The Scientific and Technological Research Council of Turkey, 2019-01-01)
Magnetic and optical bifunctional nanoparticles that combine easy separation, preconcentration, and efficient SERS capabilities have been fabricated with high sensitivity and reproducibility through a low-cost method. These gold nanoparticles attached on magnetic silica-coated cobalt nanospheres (Co@SiO2/AuNPs) display the advantage of strong resonance absorption due to gaps at nanoscale between neighboring metal nanoparticles bringing large field enhancements, known as "hot spots". The prepared particles c...
Biodegradation of Chlorobenzene and Nitrobenzene at Interfaces between Sediment and Water
Kurt, Zöhre; Spain, Jim C. (American Chemical Society (ACS), 2012-11-06)
Plumes of contaminated groundwater often pass through an oxic/anoxic interface when they discharge into surface water bodies. We tested the hypothesis that contaminants recalcitrant under anaerobic conditions but degradable under aerobic conditions can be biodegraded at the interface resulting in the protection of the overlying water. Flow-through columns containing sediment and water were used to evaluate degradation of synthetic organic compounds at the thin organic layer at the sediment/water interface. ...
Electrochromic and photovoltaic applications of benzotriazole bearing donor acceptor type conjugated polymers
Baran, Derya; Toppare, Levent Kamil; Department of Chemistry (2010)
Organic semi-conductors are of great interest since these compounds can be utilized as active layers in many device applications such as ECDs, LEDs and solar cells. Incorporating the benzotriazole units into the polymer backbone enhances the optical properties of donor units. Hexyl thiophene and pyrrole are commonly used as electron donor materials. Benzotriazole can be coupled to hexyl thiophene or pyrrole to yield materials which can be polymerized to give donor acceptor type polymers. These materials are...
Solidification/stabilization of hazardous wastes containing metals and organic contaminants
Yilmaz, Olcay; Ünlü, Kahraman; Çokça, Erdal (American Society of Civil Engineers (ASCE), 2003-04-01)
The potential of solidification/stabilization (S/S) technology for the safe disposal of hazardous wastes has wide spread recognition. The purpose of this study was to investigate the effectiveness of portland cement-based S/S technology for the safe disposal of hazardous wastes containing toxic metals and organic contaminants. As hazardous wastes, metal enriched mining residue, adsorbable organic halogens (AOX) containing pulp and paper sludge, and polychlorinated biphenyl (PCB) oil-contaminated soil were u...
Citation Formats
S. Karthikeyan, Z. Kurt, G. Pandey, and J. C. Spain, “Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN),” ENVIRONMENTAL SCIENCE & TECHNOLOGY, pp. 11193–11199, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41256.