Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Fully Integrated and Battery-Free Interface for Low-Voltage Electromagnetic Energy Harvesters
Date
2015-07-01
Author
Ulusan, Hasan
Gharehbaghi, Kaveh
Zorlu, Ozge
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
This paper presents a fully integrated and battery-free 90 nm interface circuit for ac/dc conversion and step up of low-voltage ac signals generated by electromagnetic (EM) energy harvesters. The circuit is composed of two stages: The rectifier in the first stage utilizes an improved ac/dc doubler structure with active diodes internally powered by a passive ac/dc doubler and custom-designed comparators to minimize the voltage drops. With this, the efficiency is enhanced to 67% while providing 0.61 V to 40 mu A load. The second stage is a dc/dc converter utilizing a low-voltage charge pump with an on-chip ring oscillator for further voltage step up. The rectifier stage is functional down to 125 mV input peak voltage, and the full interface circuit can maintain more than 1 V dc at 1 M Omega load for input peak voltages higher than 0.4 V. The circuit delivers 2.48 V to a 4.4 M Omega load, when interfaced to an in-house EM harvester, operating under 10 Hz, 0.5g vibration.
Subject Keywords
vibration-based energy harvesting
,
Self-powered rectifier
,
Low-voltage ac/dc conversion
,
Fully integrated interface electronics
,
Electromagnetic (EM) power generation
URI
https://hdl.handle.net/11511/41326
Journal
IEEE TRANSACTIONS ON POWER ELECTRONICS
DOI
https://doi.org/10.1109/tpel.2014.2344915
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2013-12-01)
This paper presents a fully-integrated self-powered interface circuit for efficient rectification of the signals generated by vibration based low-voltage electromagnetic (EM) energy harvesters. The circuit utilizes an improved AC/DC doubler structure with active diodes to minimize the forward bias voltage drop for enhancing the rectifier efficiency. The comparators in the active diodes are powered internally by another passive AC/DC doubler with diode connected transistors. The performance is maximized thro...
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
A 180 nm Self-Powered Rectifier Circuit for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Külah, Haluk; Muhtaroglu, Ali (2013-12-18)
This paper presents a new self-powered low voltage rectifier implementation for vibration-based electromagnetic (EM) energy harvesters. The proposed circuit is an improved version of the previously reported rectifier, which was designed in TSMC 90 nm CMOS technology. The circuit is designed in lower cost UMC 180 nm CMOS technology, and uses a passive AC/DC quadrupler structure to supply the external power of the utilized active components. Simulation results show that the maximum power conversion efficiency...
Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2017-07-01)
This paper presents a self-powered interface enabling battery-like operation with a regulated 3 V output from ac signals as low as 0.4 V-peak, generated by electromagnetic energy harvesters under low frequency vibrations. As the first stage of the 180 nm standard CMOS circuit, harvested signal is rectified through an ac/dc doubler with active diodes powered internally by a passive ac/dc quadrupler. The voltage is boosted in the second stage through a low voltage charge pump stimulated by an on-chip ring osc...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ulusan, K. Gharehbaghi, O. Zorlu, A. Muhtaroglu, and H. Külah, “A Fully Integrated and Battery-Free Interface for Low-Voltage Electromagnetic Energy Harvesters,”
IEEE TRANSACTIONS ON POWER ELECTRONICS
, pp. 3712–3719, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41326.