Elastic Response of Heat Generating Rod at a Variable Generating Rate

The aim of this study is to develop a computational model to analyze thermally induced stress and deformation in a heat generating solid rod. The rod is initially at zero temperature, but for times greater than zero heat is generated internally at both space and time dependent rate. As the rod is heated up slowly an uncoupled solution is realized. The heat conduction equation with a variable generation rate is solved by a finite element collocation method. Two different generation rates are handled. The numerical solution of thermoelastic equation is achieved by a shooting method. The computational model is verified in comparison to analytical solution for a special case.


Eraslan, Ahmet Nedim (2016-01-01)
The stress response of axially constrained two-layer composite tubes under cyclic loading of external pressure is investigated in this study. Elastic and elastoplastic stress states for the tube assemblies are examined by developing a mathematical model based on Tresca's yield criterion, its associated ow rule, and linear strain hardening. Using this model, the composite tubes with different dimensions are analyzed under one cycle of loading, unloading, and reloading of external pressure. It is observed tha...
Analyses of elastic limit heat loads in thick walled tubes subjected to periodic surface temperatures: analytical treatment
APATAY, TUNÇ; Eraslan, Ahmet Nedim (2018-01-01)
ANALYTICAL SOLUTIONS ARE DERIVED TO ANALYZE elastic limit heat loads in tubes subjected to periodic surface temperatures. The tube is initially at zero temperature and for the times greater than zero one of the surfaces of the cylinder is subject to a periodic boundary condition while the other surface is insulated. For the transient temperature distribution, the heat conduction equation is solved by using Duhamel's theorem. The uncoupled theory of thermoelasticity is used as the cylinder is heated or coole...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Detailed simulations of parabolic trough collector for investigating enhancement of heat transfer to absorber tube flow
Uygur, Sinan; Tarı, İlker; Department of Mechanical Engineering (2021-2-12)
In this thesis, a detailed method to simulate heat transfer and fluid flow of parabolic trough solar collectors is presented. An optical model of the considered collector is created with Tonatiuh ray tracing program. The data of ray tracing analysis is exported to MATLAB as a binary file for post-processing. Curve fitting and surface fitting to the data are performed to obtain the heat flux distribution on the absorber tube’s outer surface. User-defined functions (UDFs) for ANSYS Fluent Computational Fluid ...
Improving flow structure and natural convection within fin spacings of plate fin heat sinks
Özet, Mehmet Erdem; Tarı, İlker; Department of Mechanical Engineering (2015)
The main objectives of this thesis are to numerically investigate the previously observed recirculation zones and longitudinal vortices that occur in low fin height plate finned horizontal heat sinks and to improve the flow structures and heat transfer in these zones using various approaches with the help of simulations performed using commercially available CFD software. The approaches used for improvements are replacing the outer most fins with higher ones, introducing gaps on the length of the fins in va...
Citation Formats
A. N. Eraslan and E. Varlı, “Elastic Response of Heat Generating Rod at a Variable Generating Rate,” 2014, vol. 1648, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41352.