Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder

Download
2019-01-01
Tezel, Guler Bengusu
YAPICI, Kerim
Uludağ, Yusuf
The confined flow of a Newtonian fluid around a square cylinder mounted in a rectangular channel was investigated both numerically and experimentally. Ratio between the pipe and channel height, the blockage ratio, is kept constant at 1/4. The flow variables including streamlines, vorticity and drag coefficients were calculated at 0 <= Re <= 50 using finite volume method. The velocity terms in the momentum equations are approximated by a higher-order and bounded scheme of Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA). Particle Image Velocimetry (PIV) was also used to obtain the two-dimensional velocity field. The flow measurements were conducted for 1 <= Re <= 50. Streamline and vorticity results obtained by PIV are compared with those of the numerical simulation. Based on this comparison, good agreement is found between the numerical and experimental results in a qualitative manner.
PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING

Suggestions

Numerical investigation of unsteady natural convection from a heated cylinder in a square enclosure
Bozkaya, Canan (null; 2015-07-06)
A numerical study of two dimensional, unsteady, incompressible natural convection flow and heat transfer is performed in a square enclosure involving a heated circular cylinder. The natural convection is driven by a temperature difference between the cold outer square and hot inner circular cylinders. The temperature of the inner cylinder varies sinusoidally with time about a fixed mean temperature while the outer enclosure is kept at a lower constant temperature. The problem under consideration, which is g...
Flow Characterization of Viscoelastic Fluids around Square Obstacle
Tezel, Guler Bengusu; YAPICI, Kerim; Uludağ, Yusuf (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
This study focuses on the computational implementation of structured non-uniform finite volume method for the 2-D laminar flow of viscoelastic fluid past a square section of cylinder in a confined channel with a blockage ratio 1/4 for Re = 10(-)(4), 5, 10 and 20. Oldroyd-B model (constant viscosity with elasticity) and the PTT model (shear-thinning with elasticity) are the constitutive models considered. In this study effects of the elasticity and inertia on the drag coefficients and stress fields around th...
Numerical investigation of flow and scour around a vertical circular cylinder
Baykal, Cüneyt; Fuhrman, D. R.; Jacobsen, N. G.; Fredsoe, J. (The Royal Society, 2015-01-28)
Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynolds-averaged Navier-Stokes equations. The model incorporates (i) k-omega turbulence closure, (ii) vortex-shedding processes, (iii) sediment transport (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it i...
Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture
Tay, W. B.; de Baar, J. H. S.; Perçin, Mustafa; Deng, S.; van Oudheusden, B. W. (American Institute of Aeronautics and Astronautics (AIAA), 2018-8)
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the ...
Numerical Analysis of Viscoelastic Fluids in Steady Pressure-Driven Channel Flow
YAPICI, KERİM; Karasözen, Bülent; Uludağ, Yusuf (2012-05-01)
The developing steady flow of Oldroyd-B and Phan-Thien-Tanner (PTT) fluids through a two-dimensional rectangular channel is investigated computationally by means of a finite volume technique incorporating uniform collocated grids. A second-order central difference scheme is employed to handle convective terms in the momentum equation, while viscoelastic stresses are approximated by a third-order accurate quadratic upstream interpolation for convective kinematics (QUICK) scheme. Momentum interpolation method...
Citation Formats
G. B. Tezel, K. YAPICI, and Y. Uludağ, “Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder,” PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, pp. 190–199, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41394.