2D-3D feature association via projective transform invariants for model-based 3D pose estimation

2012-01-26
Gedik, O. Serdar
Alatan, Abdullah Aydın
The three dimensional (3D) tracking of rigid objects is required in many applications, such as 3D television (3DTV) and augmented reality. Accurate and robust pose estimates enable improved structure reconstructions for 3DTV and reduce jitter in augmented reality scenarios. On the other hand, reliable 2D-3D feature association is one of the most crucial requirements for obtaining high quality 3D pose estimates. In this paper, a 2D-3D registration method, which is based on projective transform invariants, is proposed. Due to the fact that projective transform invariants are highly dependent on 2D and 3D coordinates, the proposed method relies on pose consistencies in order to increase robustness of 2D-3D association. The reliability of the approach is shown by comparisons with RANSAC, perspective factorization and SoftPOSIT based methods on real and artificial data.

Suggestions

3-D Rigid Body Tracking Using Vision and Depth Sensors
Gedik, O. Serdar; Alatan, Abdullah Aydın (Institute of Electrical and Electronics Engineers (IEEE), 2013-10-01)
In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm,...
Fusing 2D and 3D Clues for 3D Tracking Using Visual and Range Data
Gedik, O. Serdar; Alatan, Abdullah Aydın (2013-07-12)
3D tracking of rigid objects is required in many applications, such as robotics or augmented reality (AR). The availability of accurate pose estimates increases reliability in robotic applications and decreases jitter in AR scenarios. Pure vision-based 3D trackers require either manual initializations or offline training stages, whereas trackers relying on pure depth sensors are not suitable for AR applications. In this paper, an automated 3D tracking algorithm, which is based on fusion of vision and depth ...
Photometric stereo considering highlights and shadows
Büyükatalay, Soner; Halıcı, Uğur; Birgül, Özlem; Department of Electrical and Electronics Engineering (2011)
Three dimensional (3D) shape reconstruction that aims to reconstruct 3D surface of objects using acquired images, is one of the main problems in computer vision. There are many applications of 3D shape reconstruction, from satellite imaging to material sciences, considering a continent on earth or microscopic surface properties of a material. One of these applications is the automated firearm identification that is an old, yet an unsolved problem in forensic science. Firearm evidence matching algorithms rel...
3D Object Modeling by Structured Light and Stereo Vision
Ozenc, Ugur; Tastan, Oguzhan; GÜLLÜ, MEHMET KEMAL (2015-05-19)
In this paper, we demonstrate a 3D object modeling system utilizing a setup which consists of two CMOS cameras and a DLP projector by making use of structured light and stereo vision. The calibration of the system is carried out using calibration pattern. The images are taken with stereo camera pair by projecting structured light onto the object and the correspondence problem is solved by both epipolar constraint of stereo vision and gray code constraint of structured light. The first experimental results s...
3-D motion estimation of rigid objects for video coding applications using an improved iterative version of the E-matrix method
Alatan, Abdullah Aydın (1998-02-01)
As an alternative to current two-dimensional (2-D) motion models, a robust three-dimensional (3-D) motion estimation method is proposed to be utilized in object-based video coding applications, Since the popular E-matrix method is well known for its susceptibility to input errors, a performance indicator, which tests the validity of the estimated 3-D motion parameters both explicitly and implicitly, is defined. This indicator is utilized within the RANSAC method to obtain a robust set of 2-D motion correspo...
Citation Formats
O. S. Gedik and A. A. Alatan, “2D-3D feature association via projective transform invariants for model-based 3D pose estimation,” 2012, vol. 8290, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41406.