Visible photoluminescence from chain Tl4In3GaSe8 semiconductor

2006-07-05
The emission band spectra of undoped Tl4In3GaSe8 chain crystals have been studied in the 16-300 K temperature range and the 535-740 nm wavelength range. Two visible photoluminescence bands centred at 589 and 633 nm were observed at T = 16 K. Variations of both bands have been investigated over a wide range of laser excitation intensity ( 3 x 10(-4) -1.2 W cm(-2)). Radiative transitions with energies of 2.10 and 1.96 eV from two upper conduction bands to two shallow acceptor levels (0.03 and 0.01 eV), respectively, were suggested as being responsible for the observed bands in Tl4In3GaSe8 crystal, which is non-transparent in the visible range.
JOURNAL OF PHYSICS-CONDENSED MATTER

Suggestions

Infrared photoluminescence from TlGaS2 layered single crystals
Yuksek, NS; Hasanlı, Nızamı; Aydinli, A; Ozkan, H; Acikgoz, M (Wiley, 2004-09-01)
Photolimuniscence (PL) spectra of TlGaS2 layered crystals were studied in the wavelength region 500-1400 nm and in the temperature range 15-115 K, We observed three broad bands centered at 568 nm (A-band), 718 nm (B-band) and 1102 nm (C-band) in the PL spectrum. The observed bands have half-widths of 0.221, 0.258 and 0.067 eV for A-, B-, and C-bands, respectively. The increase of the emission band half-width, the blue shift of the emission band peak energy and the quenching of the PL with increasing tempera...
Excitation intensity and temperature-dependent photoluminescence and optical absorption in Tl4Ga3InSe8 layered crystals
Goksen, K.; Hasanlı, Nızamı; Turan, Raşit (Wiley, 2006-08-01)
Photoluminescence (PL) spectra of Tl4Ga3InSe8 layered crystals grown by Bridgman method have been studied in the wavelength region of 600-750 nm and in the temperature range of 17-68 K. A broad PL band centered at 652 nun (1.90 eV) was observed at T = 17 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.13 to 55.73 mW cm(-2) range. Radiative transitions from donor level located at 0.19 eV below the bottom of conduction band to shallow acceptor level located...
Photoluminescence spectra of GaS0.75Se0.25 layered single crystals
Hasanlı, Nızamı; Ozkan, H (Wiley, 2002-01-01)
Photoluminescence (PL) spectra of GaS0.75Se0.25 layered single crystals have been studied in the wavelength region of 500-850 nm and in the temperature range of 10-200 K. Two PL bands centered at 527 ( 2.353 eV, A-band) and 658 nm (1.884 eV, B-band) were observed at T = 10 K. Variations of both bands have been studied as a function of excitation laser intensity in the range from 8x10(-3) to 10.7 W cm(-2). These bands are attributed to recombination of charge carriers through donor-acceptor pairs located in ...
Reflectance spectra and refractive index of a Nd : YAG laser-oxidized Si surface
Aygun, G; Atanassova, E; Turan, Raşit; Babeva, T (Elsevier BV, 2005-02-15)
The reflectance spectra and refractive index of Nd:YAG laser-oxidized SiO2 layers with thicknesses from 15 to 75 nm have been investigated with respect to the laser beam energy density and substrate temperature. Thickness and refractive index of films have been determined from reflectance measurements at normal light incidence in the spectral range 300-800 nm. It was found that the oxide-growth conditions at higher substrate temperatures and laser powers greater than 3.36 J cm(-2) provides a better film qua...
Dispersive optical constants and temperature tuned band gap energy of Tl2InGaS4 layered crystals
Goksen, K.; Hasanlı, Nızamı; Ozkan, H. (IOP Publishing, 2007-06-27)
The optical properties of Tl2InGaS4 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 400-1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.35 and 2.54 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma =...
Citation Formats
N. Hasanlı, “Visible photoluminescence from chain Tl4In3GaSe8 semiconductor,” JOURNAL OF PHYSICS-CONDENSED MATTER, pp. 6057–6064, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41415.