Photoluminescence spectra of GaS0.75Se0.25 layered single crystals

2002-01-01
Photoluminescence (PL) spectra of GaS0.75Se0.25 layered single crystals have been studied in the wavelength region of 500-850 nm and in the temperature range of 10-200 K. Two PL bands centered at 527 ( 2.353 eV, A-band) and 658 nm (1.884 eV, B-band) were observed at T = 10 K. Variations of both bands have been studied as a function of excitation laser intensity in the range from 8x10(-3) to 10.7 W cm(-2). These bands are attributed to recombination of charge carriers through donor-acceptor pairs located in the band gap. Radiative transitions from shallow donor levels located 0.043 and 0.064 eV below the bottom of conduction band to acceptor levels located 0.088 and 0.536 eV above the top of the valence band are suggested to be responsible for the observed A- and B-bands in the PL spectra, respectively.

Suggestions

Excitation intensity and temperature-dependent photoluminescence and optical absorption in Tl4Ga3InSe8 layered crystals
Goksen, K.; Hasanlı, Nızamı; Turan, Raşit (Wiley, 2006-08-01)
Photoluminescence (PL) spectra of Tl4Ga3InSe8 layered crystals grown by Bridgman method have been studied in the wavelength region of 600-750 nm and in the temperature range of 17-68 K. A broad PL band centered at 652 nun (1.90 eV) was observed at T = 17 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.13 to 55.73 mW cm(-2) range. Radiative transitions from donor level located at 0.19 eV below the bottom of conduction band to shallow acceptor level located...
Infrared photoluminescence from TlGaS2 layered single crystals
Yuksek, NS; Hasanlı, Nızamı; Aydinli, A; Ozkan, H; Acikgoz, M (Wiley, 2004-09-01)
Photolimuniscence (PL) spectra of TlGaS2 layered crystals were studied in the wavelength region 500-1400 nm and in the temperature range 15-115 K, We observed three broad bands centered at 568 nm (A-band), 718 nm (B-band) and 1102 nm (C-band) in the PL spectrum. The observed bands have half-widths of 0.221, 0.258 and 0.067 eV for A-, B-, and C-bands, respectively. The increase of the emission band half-width, the blue shift of the emission band peak energy and the quenching of the PL with increasing tempera...
Visible photoluminescence from chain Tl4In3GaSe8 semiconductor
Hasanlı, Nızamı (IOP Publishing, 2006-07-05)
The emission band spectra of undoped Tl4In3GaSe8 chain crystals have been studied in the 16-300 K temperature range and the 535-740 nm wavelength range. Two visible photoluminescence bands centred at 589 and 633 nm were observed at T = 16 K. Variations of both bands have been investigated over a wide range of laser excitation intensity ( 3 x 10(-4) -1.2 W cm(-2)). Radiative transitions with energies of 2.10 and 1.96 eV from two upper conduction bands to two shallow acceptor levels (0.03 and 0.01 eV), respec...
Resonant Raman scattering near the free-to-bound transition in undoped p-GaSe
Hasanlı, Nızamı; Ozkan, H (Wiley, 2001-01-01)
Raman spectra of GaSe layered crystal have been measured using a He-Ne laser and temperature tuning the free-to-bound gap in the range 10-290 K. Resonance enhancement of E'((12)) mode has been observed for both incident and scattered photon energies equal to the free-to-bound transition energy.
Temperature-tuned band gap energy and oscillator parameters of Tl2InGaSe4 semiconducting layered single crystals
Hasanlı, Nızamı (Wiley, 2009-03-01)
The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500-1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma = -4...
Citation Formats
N. Hasanlı and H. Ozkan, “Photoluminescence spectra of GaS0.75Se0.25 layered single crystals,” CRYSTAL RESEARCH AND TECHNOLOGY, pp. 581–586, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42434.