Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2x center dot P2W15Nb3O62}(6-) in Ir(0)(n) Nanoparticle Formation From [(1,5-COD)Ir-I center dot P2W15Nb3O62](8-) Plus Dihydrogen

2017-04-19
The nucleation process yielding Ir(0)(similar to 300) nanoparticles from (Bu4N)(5)Na-3[(1,5-COD)Ir center dot P2W15Nb3O62] (abbreviated hereafter as (COD)Ir center dot POM8-, where POM9- = the polyoxometalate, P2W15Nb3O629-) under H-2 is investigated to learn the true molecularity, and hence the associated kinetically effective nucleus (KEN), for nanoparticle formation for the first time. Recent work with this prototype transition metal nanoparticle formation system (J. Am. Chem. Soc. 2014, 136, 17601-17615) revealed tliat nucleation in this system is an apparent second-order in the precatalyst, A = (COD)Ir center dot POM8-, not the higher order implied by classic nucleation theory and its nA reversible arrow A(n), "critical nucleus", A(n) concept. Herein) the three most reasonable more intimate mechanisms of nucleation are tested: bimolecular nucleation, termolecular nucleation, and a mechanism termed "alternative:termolecular nueleation" in which 2(COD)Ir+ and 1(COD)Ir center dot POM8- yield the transition state of the rate-deterrnining step of nucleation. The results obtained definitively rule out a simple bimolecular nucleation mechanism and provide evidence for the alternative termolecular mechanism with a KEN of 3, Ir-3. All higher molecularity nucleation mechanisms were also ruled out. Further insights into the KEN and its more detailed composition involving hydrogen, {Ir3H2xPOM}(6-), are also obtained from the established role of H-2 in the Ir(0)(similar to 300) formation balanced reaction stoichiometry, from the p(H-2) dependence of the kinetics, and from a D-2/H-2 kinetic isotope effect of 1.2(+/- 0.3). Eight insights and conclusions are presented. A section covering caveats in the current work, and thus needed future studies, is also included.
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Suggestions

GUEST HOST INTERACTIONS IN SODIUM ZEOLITE-Y - STRUCTURAL AND DYNAMIC NA-23 DOUBLE-ROTATION NMR-STUDY OF H2O, PME3, MO(CO)6, AND MO(CO)4(PME3)2 ADSORPTION IN NA56Y
JELINEK, R; Özkar, Saim; PASTORE, HO; MALEK, A; OZIN, GA (American Chemical Society (ACS), 1993-01-01)
Na-23 double-rotation NMR (DOR) provides site-specific structural and dynamical information on guest-host interactions within sodium zeolite Y pores. Quantitative adsorption of H2O, PMe3, and Mo(CO)6 guests affects both the positions and line shapes of the N-23 resonances from specific extraframework Na+ sites. The evolution of the Na-23 DOR spectra with the progressive introduction of guest molecules allows one to probe direct ''solvation'' effects involving the Na+ cations in the larger supercages, as wel...
INTRAZEOLITE METAL-CARBONYL TOPOTAXY - A COMPREHENSIVE STRUCTURAL AND SPECTROSCOPIC STUDY OF INTRAZEOLITE GROUP-VI METAL HEXACARBONYLS AND SUBCARBONYLS
Özkar, Saim; MOLLER, K; BEIN, T (American Chemical Society (ACS), 1990-12-01)
This paper focuses attention on the intrazeolite anchoring, thermal decarbonylation, ligand exchange, and addition chemistry of M(CO)6-M'56Y, where M = Cr, Mo, W; M' = H, Li, Na, K, Rb, Cs. The key points to emerge from this study include the following. (i) M(CO)6-M'56Y samples have the hexacarbonylmetal(O) molecule associated with two alpha-cage extraframework cations (or Bronsted protons), via the oxygen end of two trans bonded carbonyls with a saturation loading of 2M(CO)6/alpha-cage. (ii) M(CO)6-M'56...
Cobalt Metallopeptide Electrocatalyst for the Selective Reduction of Nitrite to Ammonium
Guo, Yixing; Stroka, Jesse R.; Kandemir, Banu; Dickerson, Claire E.; Bren, Kara L. (American Chemical Society (ACS), 2018-12-12)
A cobalt-tripeptide complex (CoGGH) is developed as an electrocatalyst for the selective six-electron, eight-proton reduction of nitrite to ammonium in aqueous buffer near neutral pH. The onset potential for nitrite reduction occurs at -0.65 V vs Ag/AgCl (1 M KCl). Controlled potential electrolysis at -0.90 V generates ammonium with a faradaic efficiency of 90 +/- 3% and a turnover number of 3550 +/- 420 over 5.5 h. CoGGH also catalyzes the reduction of the proposed intermediates nitric oxide and hydroxylam...
Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions
Goulas, Konstantinos A.; SREEKUMAR, Sanil; Song, Yuying; Kharidehal, Purnima; Günbaş, Emrullah Görkem; Dietrich, Paul J.; Johnson, Gregory R.; Wang, Y. C.; Grippo, Adam M.; Grabow, Lars C.; Gokhale, Amit A.; Toste, F. Dean (American Chemical Society (ACS), 2016-06-01)
Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the, transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM...
INTRAZEOLITE CARBONYL(ETA-5-CYCLOPENTADIENYL)DIHYDRIDOIRIDIUM(III) (CPIR(CO)H2-M56Y, WHERE M = H, LI, NA, K, RB, AND CS)
CROWFOOT, L; OZIN, GA; Özkar, Saim (American Chemical Society (ACS), 1991-03-01)
Vapor-phase impregnation and thermal equilibration of CpIr(CO)H2 in dehydrated M56Y (where M = H, Li, Na, K, Rb, and Cs) yields samples in which the guest displays two main anchoring modes. In Li56Y and Na56Y, a CpIrH2(CO)...M+ interaction is favored (type I), whereas in K56Y, Rb56Y, and Cs56Y the preferred-binding geometry involves CpIr(CO)H2...M+ (type II). The topology, spacial requirements, and ionic potential of the site II M+ cations appear to be mutually responsible for "lock-and-key" anchoring ef...
Citation Formats
S. Özkar, “Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2x center dot P2W15Nb3O62}(6-) in Ir(0)(n) Nanoparticle Formation From [(1,5-COD)Ir-I center dot P2W15Nb3O62](8-) Plus Dihydrogen,” JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, pp. 5444–5457, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41429.