Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characterization of oil shales by high pressure DSC
Date
1999-01-01
Author
Kök, Mustafa Verşan
Pokol, Gy.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
139
views
0
downloads
Cite This
Pressurised differential scanning calorimeter (PDSC) has been used to obtain information on the pyrolysis and combustion characteristics of oil shales. Two distinct exothermic peaks were identified in combustion experiments known as low temperature oxidation (LTO) and high temperature oxidation (HTO) reaction regions. The pyrolysis process of all studied oil shale samples showed one exothermic effect at each total pressure studied. Kinetic data were analysed by Roger & Morris and Arrhenius methods and the results are discussed.
Subject Keywords
Combustion
,
Pyrolysis
,
Oil shale
,
Kinetics
,
High pressure DSC
URI
https://hdl.handle.net/11511/41444
Journal
Journal of Thermal Analysis and Calorimetry
DOI
https://doi.org/10.1023/a:1010103500574
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Combustion characteristics of crude oil-limestone mixtures: High pressure thermogravimetric analysis and their relevance to in-situ combustion
Kök, Mustafa Verşan; Price, D. (1997-12-01)
High pressure thermogravimetric analysis (HPTG) was used in order to study the oxidation of crude oil in a porous medium under pressurised conditions for simulation of in-situ combustion during oil recovery. Three distinct reaction regions were observed from the HPTG curves in an oxidising environment subjected to a constant heating rate. These were low temperature oxidation, fuel deposition and high temperature oxidation. The method of Coats and Redfern was used to obtain kinetic parameters and the results...
Evaluation of Turkish oil shales - Thermal analysis approach
Kök, Mustafa Verşan (2001-12-01)
In this research, thermal characteristics of three Turkish oil shales (Himmetoglu, Beypazari and Hatuldag) were studied by thermal analysis techniques (differential scanning calorimetry, thermogravimetry and pressurised differential scanning calorimetry). Two distinct exothermic peaks were identified in all experiments known as low-temperature oxidation and high-temperature oxidation reaction regions. Kinetic data were analysed by Arrhenius, and Coats and Redfern models and the results are discussed.
Effect of pressure and particle size on the thermal cracking of light crude oils in sandstone matrix
Kök, Mustafa Verşan (Springer Science and Business Media LLC, 2009-4-27)
This research is focused on the effects of pressure (100-300 Pa) and matrix and on light crude oil combustion in sandstone matrix using pressurized differential scanning calorimetry (PDSC). Light crude oils and sandstone mixtures were prepared to give a composition of 15 mass% crude oil in sandstone matrix. A total of forty-eight PDSC experiments were performed. Roger and Morris kinetic model was used to analyse the data obtained from PDSC experiments and the results are discussed.
Characterization of degradation products of polyethylene oxide by pyrolysis mass spectrometry
Fares, M.M.; Hacaloğlu, Jale; Suzer, S. (1994-01-01)
The techniques of direct and indirect (evolved gas analysis) pyrolysis MS are used to characterize the thermal degradation products of polyethylene oxide. Using direct pyrolysis MS technique the main degradation process is determined to be due to C~ and C~C scissions yielding fragments characteristic of the polymer. Evolved gas analysis indicates formation of small molecular stable compounds such as C2H•OCzH 5, CH3CHO, CO,, CO and C2H 4.
Effect of metal oxide on light oil combustion - TA and kinetic analysis
Kök, Mustafa Verşan (Springer Science and Business Media LLC, 2003-01-01)
Simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) were applied to light crude oil combustion in the presence and absence of metal oxide. In crude oil-limestone mixture, three main transitional stages are detected. These are distillation, low-temperature oxidation (LTO) and high temperature oxidation (HTO) regions respectively. In the case of experiments with Fe(III)chloride at different amounts, the shape of TG-DTA curve is changed considerably. Kinetic parameters of the samples are...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. V. Kök and G. Pokol, “Characterization of oil shales by high pressure DSC,”
Journal of Thermal Analysis and Calorimetry
, pp. 939–946, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41444.