Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers.
Download
10.1038:s41467-020-15399-2.pdf
Date
2020-04-08
Author
Abutaha, A
Kumar, P
Yıldırım, Erol
Shi, W
Yang, SW
Wu, G
Hippalgaonkar, K
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
101
downloads
Cite This
The conceptual understanding of charge transport in conducting polymers is still ambiguous due to a wide range of paracrystallinity (disorder). Here, we advance this understanding by presenting the relationship between transport, electronic density of states and scattering parameter in conducting polymers. We show that the tail of the density of states possesses a Gaussian form confirmed by two-dimensional tight-binding model supported by Density Functional Theory and Molecular Dynamics simulations. Furthermore, by using the Boltzmann Transport Equation, we find that transport can be understood by the scattering parameter and the effective density of states. Our model aligns well with the experimental transport properties of a variety of conducting polymers; the scattering parameter affects electrical conductivity, carrier mobility, and Seebeck coefficient, while the effective density of states only affects the electrical conductivity. We hope our results advance the fundamental understanding of charge transport in conducting polymers to further enhance their performance in electronic applications.
Subject Keywords
General Biochemistry, Genetics and Molecular Biology
,
General Physics and Astronomy
,
General Chemistry
URI
https://hdl.handle.net/11511/41458
Journal
Nature communications
DOI
https://doi.org/10.1038/s41467-020-15399-2
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Thermodynamics of a two-dimensional interacting Bose gas trapped in a quartic potential
Karabulut, Elife O.; Koyuncu, Mustafa; ATAV, ÜLFET; Tomak, Mehmet (Elsevier BV, 2011-01-17)
We have studied the Bose-Einstein condensation (BEC) of an interacting Bose gas confined in a two-dimensional (2D) quartic potential by using a mean-field, semiclassical two-fluid model. A thermodynamic analysis including the chemical potential, condensate fraction, total energy, and specific heat has been carried out by considering different values of the interaction strength. Finally, we have found that the behaviour of the condensate fraction and specific heat of quartically trapped bosons differs from t...
Singularities of spectra of infrared reflection of tertiary compounds of the type T1BX2
Hasanlı, Nızamı; Khomutova, M.D.; Sardarly, R.M.; Tagorov, V.I. (Springer Science and Business Media LLC, 1977-07-01)
The frequencies of lattice vibrations are calculated for compounds of the type T1BX2 on the basis of the linear-chain model. The calculated frequencies are compared with experimental values for TlGaS2 and TlGaSe2. The good agreement between the calculated and experimental frequencies serves as proof of the applicability of the linear-chain model to compounds of the T1BX2 type. The proposed method of calculation of frequencies makes it possible to predict the theoretical frequencies of lattice vibrations of ...
Measurement of the inelastic proton-proton cross-section at root s=7 TeV with the ATLAS detector
Aad, G.; et. al. (Springer Science and Business Media LLC, 2011-09-01)
The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are ...
Progressive structural and electronic properties of nano-structured carbon atomic chains
Usanmaz, D.; Srivastava, G. P. (AIP Publishing, 2013-05-21)
Ab initio calculations, based on the planewave pseudopotential method and the density functional theory, have been reported on the changes in the electronic and structural properties of short carbon atomic chains held rigidly between hydrogenated thin armchair graphene nanoribbons (N-a-AGNR) of dimer line numbers N-a = 4 and 5. We have considered chains of several lengths (n = 4-9 atoms) and with different forms of attachment with the AGNRs. It is found that odd-numbered chains are metallic in nature, with ...
Zero-field nuclear magnetic resonance of chemically exchanging systems
Barskiy, Danila A.; Taylen, Michael C. D.; Marco-Rius, Irene; Kurhanewicz, John; Vigneron, Daniel B.; Çıkrıkcı, Sevil; Aydoğdu, Ayça; Reh, Moritz; Pravdivtsev, Andrey N.; Hoevener, Jan-Bernd; Blanchard, John W.; Wu, Teng; Budker, Dmitry; Pines, Alexander (Springer Science and Business Media LLC, 2019-07-05)
Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [N-15]ammonium ((NH4+)-N-15) as a model system. We show that pH-dependent chemical exchange substantially affects ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Abutaha et al., “Correlating charge and thermoelectric transport to paracrystallinity in conducting polymers.,”
Nature communications
, pp. 1737–1737, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41458.