Global urban localization of an outdoor mobile robot with genetic algorithms

2008-02-26
DOĞRUER, CAN ULAŞ
Koku, Ahmet Buğra
Dölen, Melik
The localization of mobile robots has been studied rigorously in the past. However, only a few studies have focused on developing specific Genetic Algorithms (GAs) to address the localization problem effectively. In this study; the global urban localization of an outdoor mobile platform is considered with the utilization of the odometer, the laser-rangeq finder measurements and the digital maps created from the relevant satellite images on the Internet. The localization issue is formulated as a constrained optimization problem. The study proposes a GA-based technique to solve the problem at hand efficiently.
Springer Tracts in Advanced Robotics

Suggestions

A novel soft-computing technique to segment satellite images for mobile robot localization and navigation
DOĞRUER, CAN ULAŞ; Koku, Ahmet Buğra; Dölen, Melik (2007-11-02)
Localization of mobile robots has been studied rigorously in the last decade. A number of successful approaches such as Extended Kalman Filter, Markov Localization, and Monte Carlo Localization assume that the map of the environment is originally presented to the robot. However, an important information package like the map of the environment could not be taken for granted in most realworld problems. In this study, a novel technique composed of a combination of Fuzzy C-Means and Fuzzy Neural Network methods...
Performance comparison of point and plane features for SLAM /
Yörük, Mücahit; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2014)
Simultaneous Localization and Mapping (SLAM) is an indispensable capability for mobile robots that explore unknown environments. This advanced method is now widely employed since the development of improvements in sensor technology, such as 3D depth cameras. To avoid the risk of the human interaction in dangerous environments, various SLAM algorithms have been developed and proposed in the literature. The aim of this study, is to develop a landmark vector that improves the SLAM performance using the planar ...
Improving the accuracy of a mobile robot for localization and mapping of an unknown environment
Gümrükcü, Gülşah; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2003)
This thesis deals with sensor based motion planning of a mobile robot for localization in an unknown environment. Using the developed algorithm the robot may construct the map (GVG) of any bounded environment, and the minimum distance between any two locations in the mapped environment can be determined. In addition, the accuracy of the robot, facing dead-reckoning error can be improved. With this study, the mobile robot finds the optimum path between any two locations in any bounded environment and traces ...
Global Urban Localization of Outdoor Mobile Robots Using Satellite Images
DOĞRUER, CAN ULAŞ; Koku, Ahmet Buğra; Dölen, Melik (2008-09-26)
Localization is one of the major research fields in mobile robotics. With the utilization of satellite images and Monte Carlo localization technique, the global localization of an outdoor mobile robot is studied in this paper. The proposed method employs satellite images downloaded from the Internet to localize the robot iteratively. To accomplish this, the proposed method matches the local laser scanner data with the segmented satellite images. Initial test results conducted on the METU campus are found to...
An Implementation of 3D slam with planar segments
Turunç, Çağrı; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2012)
Localization and mapping are vital capabilities for a mobile robot. These two capabilities strongly depend on each other and simultaneously executing both of these operations is called SLAM (Simultaneous Localization and Mapping). SLAM problem requires the environment to be represented with an abstract mapping model. It is possible to construct a map from point cloud of environment via scanner sensor systems. On the other hand, extracting higher level of features from point clouds and using these extracted ...
Citation Formats
C. U. DOĞRUER, A. B. Koku, and M. Dölen, “Global urban localization of an outdoor mobile robot with genetic algorithms,” Springer Tracts in Advanced Robotics, pp. 103–112, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41498.