Free surface flow simulation with application to bluff body flow control

Kocabiyik, S.
Bozkaya, Canan
To better understand the interaction of a free surface wave motion with moving bluff bodies, a two-dimensional numerical study of the forced streamwise oscillation of a circular cylinder beneath a free surface is conducted based on a two-fluid model. Computations are carried out at a Reynolds number of R = 200, a fixed displacement amplitude, A = 0.13 and the forcing frequency-to-natural shedding frequency ratios, f/f (0) = 1.5,2.5,3.5. Finite volume discretization of the special integral form of two-dimensional continuity and unsteady Navier-Stokes equations (when a solid body is present) are performed on a fixed Cartesian grid. Improved volume-of-fluid method is used to discretize the free surface. The laminar asymmetric flow regimes in the near wake region and the fluid forces are analyzed at a fixed Froude number of Fr = 0.4 and for submergence depths at h = 0.25,0.5,0.75. A comparison of the present results with the case in the absence of a free surface is also included to illustrate the effects of inclusion of a free surface. The code validation in special cases shows good comparisons with previous numerical and experimental results. Flow regime analyses include free surface physics-based analysis, and results confirm findings of a recent work of Brons et al. [25].


Free surface wave interaction with an oscillating cylinder
Bozkaya, Canan (2014-01-01)
The numerical solution of the special integral form of two-dimensional continuity and unsteady Navier Stokes equations is used to investigate vortex states of a horizontal cylinder undergoing forced oscillations in free surface water wave. This study aims to examine the consequence of degree of submergence of the cylinder beneath free surface at Froude number 0.4. Calculations are carried out for a single set of oscillation parameters at a Reynolds number of R = 200. Two new locked-on states of vortex forma...
Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture
Tay, W. B.; de Baar, J. H. S.; Perçin, Mustafa; Deng, S.; van Oudheusden, B. W. (American Institute of Aeronautics and Astronautics (AIAA), 2018-8)
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the ...
Experimental study on the velocity limits of magnetized rotating plasmas
Teodorescu, C.; Clary, R.; Ellis, R. F.; Hassam, A. B.; Lunsford, R.; Uzun Kaymak, İlker Ümit; Young, W. C. (AIP Publishing, 2008-04-01)
An experimental study on the physical limits of the rotation velocity of magnetized plasmas is presented. Experiments are performed in the Maryland Centrifugal Experiment (MCX) [R. F. Ellis , Phys. Plasmas 12, 055704 (2005)], a mirror magnetic field plasma rotating azimuthally. The externally applied parameters that control the plasma characteristics-applied voltage, external magnetic field, and fill pressure-are scanned across the entire available range of values. It is found that the plasma rotation veloc...
Free surface flow past a circular cylinder under forced rotary oscillations
Kocabıyık, Serpıl; Bozkaya, Canan; Liverman, E. (null; 2014-07-25)
Numerical results of a viscous incompressible two-fluid model with an oscillating cylinder are analyzed. Specifically, two-dimensional flow past a circular cylinder subject to forced rotational oscillations beneath a free surface is considered. Numerical method is based on the finite volume method for solving the two-dimensional continuity and unsteady NavierStokes equations. The numerical simulations are carried out at a Reynolds number of R = 200 and a Froude number F r = 0.2, and the cylinder submergence...
Moving Object Detction in 2D and 3D Scenes
Sırtkaya, Salim; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2004)
This thesis describes the theoretical bases, development and testing of an integrated moving object detection framework in 2D and 3D scenes. The detection problem is analyzed in stationary and non-stationary camera sequences and different algorithms are developed for each case. Two methods are proposed in stationary camera sequences: background extraction followed by differencing and thresholding, and motion detection using optical flow field calculated by أKanade-Lucas Feature Trackerؤ. For non-stationary ...
Citation Formats
S. Kocabiyik and C. Bozkaya, “Free surface flow simulation with application to bluff body flow control,” EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, pp. 341–354, 2015, Accessed: 00, 2020. [Online]. Available: