Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies
Date
2019-01-01
Author
Al-Ghussain, Loiy
Taylan, Onur
Baker, Derek Keıth
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro-grid; (1) with pumped hydro storage (PHS) as a long-term ESS, (2) with batteries as a short-term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (F-RES) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the use of battery and PHS on the electricity cost and F-RES are studied. A university campus on a Mediterranean island is selected as a case study. The results show that PV-wind hybrid system of 8 MW wind and 4.2 MW PV with 89.5 MWh PHS has the highest F-RES of 88.0%, and the highest demand supply fraction as 42.6%. Moreover, the results indicate that the economic and technical parameters of RESs are affected significantly by the use of ESSs depending on the type and the capacity of both the RES and the ESS.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Nuclear Energy and Engineering
URI
https://hdl.handle.net/11511/41610
Journal
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
DOI
https://doi.org/10.1002/er.4251
Collections
Department of Mechanical Engineering, Article