Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
No-load performance analysis of brushless DC machines with axially displaceable rotor
Date
2014-01-01
Author
Bostancı, Emine
Plikat, Robert
Ponick, Bernd
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
0
downloads
Cite This
Brushless dc (BLDC) machines with a surface-mounted permanent magnet (SMPM) rotor meet the high-torque and high-efficiency requirements for automotive applications. However, their constant-power operation region is limited due to the low phase inductance. As an alternative to the electrical field-weakening methods, the speed range of radial-flux BLDC machines can be extended by mechanically reducing the axially overlapping length of the stator and the rotor. In this paper, the no-load performance of an SMPM-rotor BLDC machine with an axially displaceable permanent-magnet rotor is analyzed. The effectiveness of this mechanical field-weakening method is limited through the flux components due to the stator/rotor misalignment and the additional losses. The cause of the flux components due to the stator/rotor misalignment and the dependence of back-electromotive-force waveforms on the axial rotor position are investigated by using 3-D finite-element method (FEM) analysis, where the effects of the end-winding geometry and design are taken into account. Moreover, the additional loss mechanisms due to the stator/rotor misalignment are identified, and the no-load additional losses are determined by using the experimental and 3-D FEM analysis results. Finally, the numerical results are verified by using test-bench measurements.
Subject Keywords
Control and Systems Engineering
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/41646
Journal
IEEE Transactions on Industrial Electronics
DOI
https://doi.org/10.1109/tie.2013.2263781
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A control algorithm to minimize torque ripple and acoustic noise of switched reluctance motors
Bizkevelci, Erdal; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2008)
Despite its simple construction, robustness and low manufacturing cost, the application areas of SR motors are remained limited due to the high level of acoustic noise and torque ripple. In this thesis work, two different type of controllers are designed and implemented in order to minimize the acoustic noise and torque ripple which are considered as the major problems of SR motors. In this scope, first the possible acoustic noise sources are investigated. A sliding mode controller is designed and implement...
Self-excitation of induction motors compensated by permanently connected capacitors and recommendations for IEEE Std 141-1993
Ermiş, Muammer; Cadirci, I; Zenginobuz, G; Tezcan, H (Institute of Electrical and Electronics Engineers (IEEE), 2003-03-01)
Self-excitation of induction motors compensated by permanently connected capacitors is investigated in this paper. Theoretical analyses of self, excitation phenomenon are carried out by using some simplified equivalent circuits, and a hybrid mathematical model in ABC/dq axes, respectively, in steady state and transient state. An unusual operating condition about water pumping stations is reported, in which water within the pipeline may drive the motor in the reverse direction at speeds higher than synchrono...
Highly efficient dual-band GaN power amplifier utilising pin diode-based tunable harmonic load matching
Kilic, Hasan Huseyin; Demir, Şimşek (Institution of Engineering and Technology (IET), 2019-01-09)
This study presents a tunable dual-band gallium nitride (GaN) power amplifier (PA) operating in L-band. The first band is aimed near the lower edge of the L-band, 1GHz, and the second band is aimed near the upper edge of the L-band, 2GHz, which is located around the second harmonic of the first band. A pin diode-based tunable load matching circuit is proposed and designed in order to present the optimum fundamental and harmonic load impedances to the transistor in both operating bands for maximum efficiency...
A novel algorithm for prediction off-line stator leakage inductance and on-line stator resistance of induction motors
Sezgin, Volkan; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2009)
In vector control of induction motors it is essential to know the parameters of the motor. Known approaches to this problem have some drawbacks. This thesis work is planned to develop solutions to the existing problems. The proposed solutions will be implemented and tested.
A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope
Alper, Said Emre; Temiz, Yuksel; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2008-12-01)
This paper presents the development of a compact single-axis angular rate sensor system employing a 100-mu m-thick single-crystal silicon microelectromechanical systems gyroscope with an improved decoupling arrangement between the drive and sense modes. The improved decoupling arrangement of the gyroscope enhances the robustness of sensing frame against drive-mode oscillations and therefore minimizes mechanical crosstalk between the drive and sense modes, yielding a small bias instability. The gyroscope cor...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Bostancı, R. Plikat, and B. Ponick, “No-load performance analysis of brushless DC machines with axially displaceable rotor,”
IEEE Transactions on Industrial Electronics
, pp. 1692–1699, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41646.