Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrolytic magnesium production and its hydrodynamics by using an Mg-Pb alloy cathode
Date
2008-10-06
Author
Demirci, Goekhan
Karakaya, İshak
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
264
views
0
downloads
Cite This
Physical interaction of magnesium and chlorine was minimized by collecting magnesium in a molten Ph cathode at the bottom of the electrolyte and placing anode at the top where the chlorine gas was evolved. Thus the magnesium losses associated with the formation of suspending droplets and fine magnesium particles were eliminated and current losses were mainly due to the recombination reaction of dissolved magnesium and chlorine. Current yield changed by changing the tip angle of the conical anode. It was due to the fact that the amount of chlorine diffused into the melt was proportional to the chlorine bubble area in contact with the electrolyte per unit time. Therefore, correlation of experimentally measured electrolysis data requires the knowledge of the size and the total residence time of the chlorine bubbles in inter-electrode region. Average diameter and total residence time of the bubbles were determined for anode tip angles that were used in electrolysis experiments by a room temperature hydrodynamic model. Amount of magnesium that was lost as a result of reaction with the dissolved chlorine was calculated by assuming the dissolution of chlorine gas as the rate determining step. Theoretical magnesium losses calculated by using the data from the room temperature hydrodynamic model were in good agreement with the electrolysis experiments. Furthermore, calculated cell voltages that use the sum of theoretical decomposition potential and IR drop obtained from the composite resistance due to the electrolyte and chlorine bubbles were also in agreement with the experimental data.
Subject Keywords
Mechanical Engineering
,
Materials Chemistry
,
Mechanics of Materials
,
Metals and Alloys
URI
https://hdl.handle.net/11511/41738
Journal
JOURNAL OF ALLOYS AND COMPOUNDS
DOI
https://doi.org/10.1016/j.jallcom.2007.10.070
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Electrochemical decomposition of SiO2 pellets to form silicon in molten salts
Ergul, Emre; Karakaya, İshak; Erdogan, Metehan (Elsevier BV, 2011-01-21)
Direct electrochemical reduction of porous SiO2 pellets in molten CaCl2 salt and CaCl2-NaCl salt mixture was investigated by applying 2.8 V potential. The study focused on the effects of temperature, particle size of SiO2 powder starting material and the behavior of cathode contacting materials during electrochemical reduction process. The starting materials and the electrolysis products were characterized by X-ray diffraction analysis and scanning electron microscopy mainly. The studies showed that smaller...
Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst
Özkar, Saim (Elsevier BV, 2005-12-08)
Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H-2 catalytically from NaBH4 solutions has many advantages: NaBH4 solutions are nonflammable, reaction products are environmentally benign, rate of H-2 generation is easily controlled, the reaction product NaBO2 can be recycled, H-2 can be generated even at low temperatures. All of the cata...
Electrochemical preparation and characterization of carbon fiber reinforced poly (dimethyl siloxane)/polythiophene composites: electrical, thermal and mechanical properties
Sankir, M; Kucukyavuz, S; Kucukyavuz, Z (Elsevier BV, 2002-05-10)
A series of polydimethylsiloxane (PDMS)/polythiophene (Pth)/carbon fiber (CF) composites was synthesized by electrochemical polymerization using tetrabutylammoniumtetrafluoroborate (TBAFB) as supporting electrolyte and acetonitrile as solvent. Composites were characterized by TGA, SEM, and mechanical tests and conductivity measurements. Conductivities of composites were in the range of 25 S/cm. SEM studies show that CF were coated by PDMS/Pth matrix and well oriented in the matrix. In mechanical tests it ha...
Collection of magnesium in an Mg-Pb alloy cathode placed at the bottom of the cell in MgCl2 electrolysis
Demirci, Gokhan; Karakaya, İshak (Elsevier BV, 2007-07-31)
The electrolytic cell features a top inserted graphite anode and a cathode, Mg-Pb alloy, placed at the bottom of the cell to reduce recombination of magnesium and chlorine in the inter-electrode region. The process involved the electrolysis Of M902 to form an Mg-Pb alloy that is heavier than the electrolyte and a subsequent refining of the alloy to obtain electrolytic grade magnesium. To achieve metallic magnesium production rate with the present cell, that is comparable with the conventional methods, highe...
Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties
SACAN, L; Çırpan, Ali; CAMURLU, P; Toppare, Levent Kamil (Elsevier BV, 2006-02-01)
The homopolymer and copolymer of succinic acid bis-(2-thiophen-3-yl-ethyl)ester with thiophene were achieved via constant potential electrolysis in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, and acetonitrile/borontrifluoride ethylether (ACN/BFEE) (10:2 v/v) solvent mixture. The characterizations of both homopolymer (PSATE) and copolymer P(SATE-co-Th) were achieved by various techniques including cyclic voltammetry (CV), Fr-IR, scanning electron microscopy (SEM) and U...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Demirci and İ. Karakaya, “Electrolytic magnesium production and its hydrodynamics by using an Mg-Pb alloy cathode,”
JOURNAL OF ALLOYS AND COMPOUNDS
, pp. 255–260, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41738.