Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Random Set Methods Estimation of Multiple Extended Objects
Download
index.pdf
Date
2014-06-01
Author
Granstrom, Karl
Lundquist, Christian
Gustafsson, Fredrik
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
177
downloads
Cite This
Random set-based methods have provided a rigorous Bayesian framework and have been used extensively in the last decade for point object estimation. In this article, we emphasize that the same methodology offers an equally powerful approach to estimation of so-called extended objects, i.e., objects that result in multiple detections on the sensor side. Building upon the analogy between Bayesian state estimation of a single object and random finite set (RFS) estimation for multiple objects, we give a tutorial on random set methods with an emphasis on multiple-extended-object estimation. The capabilities are illustrated on a simple yet insightful real-life example with laser range data containing several occlusions.
Subject Keywords
Control and Systems Engineering
,
Electrical and Electronic Engineering
,
Computer Science Applications
URI
https://hdl.handle.net/11511/41826
Journal
IEEE ROBOTICS & AUTOMATION MAGAZINE
DOI
https://doi.org/10.1109/mra.2013.2283185
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Observability Through a Matrix-Weighted Graph
Tuna, Sezai Emre (Institute of Electrical and Electronics Engineers (IEEE), 2018-07-01)
Observability of an array of identical linear time-invariant systems with incommensurable output matrices is studied, where an array is called observable when identically zero relative outputs imply synchronized solutions for the individual systems. It is shown that the observability of an array is equivalent to the connectivity of its interconnection graph, whose edges are assigned matrix weights. Moreover, to better understand the relative behavior of distant units, pairwise observability that concerns wi...
Time-constrained temporal logic control of multi-affine systems
Aydın Göl, Ebru (Elsevier BV, 2013-11-01)
In this paper, we consider the problem of controlling a dynamical system such that its trajectories satisfy a temporal logic property in a given amount of time. We focus on multi-affine systems and specifications given as syntactically co-safe linear temporal logic formulas over rectangular regions in the state space. The proposed algorithm is based on estimating the time bounds for facet reachability problems and solving a time optimal reachability problem on the product between a weighted transition syste...
Quantitative measure of observability for linear stochastic systems
Subasi, Yuksel; Demirekler, Mübeccel (Elsevier BV, 2014-06-01)
In this study we define a new observability measure for stochastic systems: the mutual information between the state sequence and the corresponding measurement sequence for a given time horizon. Although the definition is given for a general system representation, the paper focuses on the linear time invariant Gaussian case. Some basic analytical results are derived for this special case. The measure is extended to the observability of a subspace of the state space, specifically an individual state and/or t...
Domain adaptation on graphs by learning graph topologies: theoretical analysis and an algorithm
Vural, Elif (The Scientific and Technological Research Council of Turkey, 2019-01-01)
Traditional machine learning algorithms assume that the training and test data have the same distribution, while this assumption does not necessarily hold in real applications. Domain adaptation methods take into account the deviations in data distribution. In this work, we study the problem of domain adaptation on graphs. We consider a source graph and a target graph constructed with samples drawn from data manifolds. We study the problem of estimating the unknown class labels on the target graph using the...
Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics
Ergül, Özgür Salih (Institution of Engineering and Technology (IET), 2008-01-03)
A hierarchical parallelisation of the multilevel fast multipole algorithm (MLFMA) for the efficient solution of large-scale problems in computational electromagnetics is presented. The tree structure of MLFMA is distributed among the processors by partitioning both the clusters and the samples of the fields appropriately for each level. The parallelisation efficiency is significantly improved compared to previous approaches, where only the clusters or only the fields are partitioned in a level.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Granstrom, C. Lundquist, F. Gustafsson, and U. Orguner, “Random Set Methods Estimation of Multiple Extended Objects,”
IEEE ROBOTICS & AUTOMATION MAGAZINE
, pp. 73–82, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41826.