Quadratic forms of codimension 2 over finite fields containing F-4 and Artin-Schreier type curves

2012-03-01
Özbudak, Ferruh
Saygi, Zulfukar
Let F-q be a finite field containing F-4. Let k >= 2 be an integer. We give a full classification of quadratic forms over F-q(k) of codimension 2 provided that certain three coefficients are from F-4. As an application of this we obtain new results on the classification of maximal and minimal curves over F-q(k) . We also give some nonexistence results on certain systems of equations over F-q(k).
FINITE FIELDS AND THEIR APPLICATIONS

Suggestions

Quadratic forms of codimension 2 over certain finite fields of even characteristic
Özbudak, Ferruh; Saygi, Zulfukar (2011-12-01)
Let F-q be a finite field of characteristic 2, not containing F-4. Let k >= 2 be an even integer. We give a full classification of quadratic forms over F-q(k) of codimension 2 provided that certain three coefficients are from F-4. We apply this to the classification of maximal and minimal curves over finite fields.
Further results on rational points of the curve y(qn) - y = gamma xqh+1 - alpha over F-qm
Cosgun, Ayhan; Özbudak, Ferruh; SAYGI, ZÜLFÜKAR (2016-06-01)
Let q be a positive power of a prime number. For arbitrary positive integers h, n, m with n dividing m and arbitrary gamma, alpha is an element of F-qm with gamma not equal 0 the number of F-qm - rational points of the curve y(qn) - y = gamma x(qh+1) - alpha is determined in many cases (Ozbudak and Saygi, in: Larcher et al. (eds.) Applied algebra and number theory, 2014) with odd q. In this paper we complete some of the remaining cases for odd q and we also present analogous results for even q.
Explicit maximal and minimal curves over finite fields of odd characteristics
Özbudak, Ferruh (2016-11-01)
In this work we present explicit classes of maximal and minimal Artin-Schreier type curves over finite fields having odd characteristics. Our results include the proof of Conjecture 5.9 given in [1] as a very special subcase. We use some techniques developed in [2], which were not used in [1].
Multidimensional cyclic codes and Artin–Schreier type hypersurfaces over finite fields
Güneri, Cem; Özbudak, Ferruh (Elsevier BV, 2008-1)
We obtain a trace representation for multidimensional cyclic codes via Delsarte's theorem. This relates the weights of the codewords to the number of affine rational points of Artin-Schreier type hypersurfaces over finite fields. Using Deligne's and Hasse-Weil-Serre inequalities we get bounds on the minimum distance. Comparison of the bounds is made and illustrated by examples. Some applications of our results are given. We obtain a bound on certain character sums over F-2 which gives better estimates than ...
Quasi constricted linear representations of abelian semigroups on Banach spaces
Emelyanov, Eduard (2002-07-24)
Let (X, ∥·∥) be a Banach space. We study asymptotically bounded quasi constricted representations of an abelian semigroup IP in L(X), i.e. representations (Tt)t∈IP which satisfy the following conditions: i) limt→∞ ∥Ttx∥ < ∞ for all x ∈ X. ii) X0:= {x ∈ X:limt→∞ ∥Ttx∥ = 0} is closed and has finite codimension. We show that an asymptotically bounded representation (Tt)t∈IP is quasi constricted if and only if it has an attractor A with Hausdorff measure of noncompactness X∥·∥1 (A) < 1 with respect to some equi...
Citation Formats
F. Özbudak and Z. Saygi, “Quadratic forms of codimension 2 over finite fields containing F-4 and Artin-Schreier type curves,” FINITE FIELDS AND THEIR APPLICATIONS, pp. 396–433, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41850.