Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash

Sahmaran, Mustafa
Yaman, İsmail Özgür
This paper presents a study on the fresh and mechanical properties of a fiber reinforced self-compacting concrete incorporating high-volume fly ash that does not meet the fineness requirements of ASTM C 618. A polycarboxylic-based superplasticizer was used in combination with a viscosity modifying admixture. In mixtures containing fly ash, 50% of cement by weight was replaced with fly ash. Two different types of steel fibers were used in combination, keeping the total fiber content constant at 60 kg/m(3). Slump flow time and diameter, V-funnel, and air content were performed to assess the fresh properties of the concrete. Compressive strength, splitting tensile strength, and ultrasonic pulse velocity of the concrete were determined for the hardened properties. The results indicated that high-volume coarse fly ash can be used to produce fiber reinforced self-compacting concrete, even though there is some reduction in the concrete strength because of the use of high-volume coarse fly ash.


Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Parameter optimization on compressive strength of steel fiber reinforced high strength concrete
Ayan, E.; Saatcioglu, Oe.; Turanlı, Lutfullah (Elsevier BV, 2011-06-01)
This paper illustrates parameter optimization of compressive strength of steel fiber reinforced high strength concrete (SFRHSC) by statistical design and analysis of experiments. Among several factors affecting the compressive strength, five parameters that maximize all of the responses have been chosen as the most important ones as age of testing, binder type, binder amount, curing type and steel fiber volume fraction. Taguchi analysis techniques have been used to evaluate L-27 (3(13)) Taguchi's orthogonal...
Tensile behavior of post-installed chemical anchors embedded to low strength concrete
YILMAZ, SALİH; Özen, Muhammet Ali; YARDIM, YAVUZ (Elsevier BV, 2013-10-01)
In the scope of this paper, tensile capacities of post-installed chemical anchors embedded to 5.9 and 10.9 MPa concrete blocks are investigated. Pull-out tests are applied to 80 ductile steel bars (S420a). For the anchor diameters, 12, 16 and 20 mm are chosen. On the other hand, 10, 15 and 20 times the bar diameter are selected as free-edge distance and embedment depth for monotonic tensile loading tests. The results indicate that installation of anchors into low-strength concrete with sufficient embedment ...
Influence of elevated temperature on axially loaded expansive cement grout borehole plug sealing performance
Akgün, Haluk (Thomas Telford Ltd., 2000-10-01)
The strength of expansive cement grout borehole plugs cast in rock cylinders is investigated theoretically and experimentally as a function of curing and testing temperature of the plugged rock cylinder and of borehole size. The distributions of thermally induced stresses and displacements, shear stresses along the plug-rock interface due to an axial stress applied to the plug, and resultant interfacial shear stresses due to a combination of uniform elevated temperature and axial load are studied and analys...
Active and non-active porosity in concrete. Part I: Experimental evidence
Yaman, İsmail Özgür; Aktan, H.M. (Springer Science and Business Media LLC, 2002-03-01)
The findings of an experimental study are described, documenting and quantifying the influence of concrete porosity on its mechanical properties in saturated and dry states. Concrete porosity consists of capillary and entrained air, and described respectively as active and non-active, depending on its influence on mechanical properties with changing moisture state. It was found that the active (capillary) porosity influence on mechanical properties is more pronounced with decreasing moisture. The influence ...
Citation Formats
M. Sahmaran and İ. Ö. Yaman, “Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash,” CONSTRUCTION AND BUILDING MATERIALS, pp. 150–156, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42123.