Temperature Dependence of the Raman Frequency, Damping Constant and the Activation Energy of a Soft-Optic Mode in Ferroelectric Barium Titanate

2012-01-01
The Raman frequency of a soft-optic mode associated with the order parameter is calculated as a function of temperature from the mean field theory for barium titanate (T-C = 222K). Using the Raman frequencies calculated, the damping constant is evaluated and it is compared with the observed one for this soft-optic mode.

Suggestions

Calculation of the Damping Constant and the Relaxation Time for the Soft-Optic and Acoustic Mode in Hexagonal Barium Titanate
Yurtseven, Hasan Hamit (2012-01-01)
The temperature dependence of the damping constant is calculated below the transition temperature (T-0 = 222K) in the ferroelectric phase of hexagonal barium titanate. The damping constant of the coupled soft-optic and acoustic mode which causes an intense central peak in the light scattering spectra, is calculated using the soft mode-hard mode coupling model and the energy fluctuation model for barium titanate.
Temperature dependence of the polarization, dielectric constant, damping constant and the relaxation time close to the ferroelectric-paraelectric phase transition in LiNbO3
Kiraci, A.; Yurtseven, Hasan Hamit (2017-01-01)
We calculate the order parameter (spontaneous polarization) and the inverse dielectric susceptibility at various temperatures in the ferroelectric phase of LiNbO3 for its ferroelectric-paraelectric phase transition (T-C =1260 K) using the Landau phenomenological model. For this calculation, the Raman frequencies of the soft optic mode (TO1) are used as the order parameter and the fitting procedure is employed for both the order parameter and the inverse dielectric susceptibility by means of the observed dat...
Temperature dependence of the Raman bandwidths and intensities of a lattice mode near the tricritical and second order phase transitions in NH4Cl
Karacali, H; Yurtseven, Hasan Hamit (2006-01-11)
We calculate here the temperature dependence of the damping constant using the expressions derived from the Matsushita's theory and the temperature dependence of the order parameter from the molecular field theory for the tricritical (1.5 kbar) and second order (2.8 kbar) phase transitions in NH4Cl. Our calculations are performed for the nu(5) (174 cm(-1)) Raman mode of NH4Cl for the pressures studied. Predictions for the damping constant are in good agreement with our observed Raman bandwidths of this latt...
Calculation of the Raman frequency and the damping constant (linewidth) of the stretching modes for the metal-organic compound DMMg close to the paraelectric-ferroelectric transitions
Yurtseven, Hasan Hamit (2018-01-01)
We calculate the Raman frequencies of the two stretching modes of as a function of temperature close to the paraelectric-ferroelectric transition (Tc = 270K) in (CH3)(2)NH2Mg(HCOO)(3) referred as DMMg. By assuming that the Raman frequencies of those two modes which exhibit anomalous behaviour near Tc due to the ordering of the dimethlyammonium cations (DMA(+)) as observed experimentally, are associated with the spontaneous polarization (order parameter), their Raman frequencies and damping constants are pre...
Temperature dependence of the Raman frequencies and bandwidths close to phase transitions in ammonium halides
Yurtseven, Hasan Hamit (2001-09-01)
In this study, we give the temperature dependence of our observed frequencies and bandwidths for the Raman optical modes in the ammonium halides close to the phase transitions of the first order (NH4 Br), tricritical (NH4Cl) and second order (NH4Cl). Using the predictions of an [sing pseudospin-phonon coupled model, which considers interactions between two spin and two phonons, our observed Raman data have been interpreted qualitatively. Our results show that an Ising model considered here can explain the o...
Citation Formats
A. Kiraci and H. H. Yurtseven, “Temperature Dependence of the Raman Frequency, Damping Constant and the Activation Energy of a Soft-Optic Mode in Ferroelectric Barium Titanate,” FERROELECTRICS, pp. 14–21, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42158.