Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A multi-technique approach to determine temporal and spatial variability of groundwater-stream water exchange
Date
2020-04-03
Author
Koruk, Kasimcan
Yılmaz, Koray Kamil
Akyürek, Sevda Zuhal
Binley, Andrew
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
Characterizing the spatio-temporal distribution of groundwater-surface water (GW-SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the cakit stream (Nigde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW-SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.
Subject Keywords
Water Science and Technology
URI
https://hdl.handle.net/11511/42222
Journal
HYDROLOGICAL PROCESSES
DOI
https://doi.org/10.1002/hyp.13754
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
A Multi-technique approach to determine temporal and spatial variability of groundwater-stream water exchange in Çakit stream, Niğde/Turkey
Koruk, Kasımcan.; Yılmaz, Koray K.; Department of Geological Engineering (2019)
Characterizing the spatio-temporal distribution of groundwater-surface water exchange fluxes are of paramount importance in understanding catchment behavior. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt Stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the regional scale to determine the focus area at...
Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients
Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kağan; Meile, Christof (American Geophysical Union (AGU), 2008-02-22)
[1] A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO(3)(-), NH(4)(+), and PO(4)) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient ...
Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures
Pokhrel, Prafulla; Yılmaz, Koray Kamil; Gupta, Hoshin V. (Elsevier BV, 2012-02-08)
This paper explores the use of a semi-automated multiple-criteria calibration approach for estimating the parameters of the spatially distributed HL-DHM model to the Blue River basin, Oklahoma. The study was performed in the context of Phase 2 of the DMIP project organized by the Hydrology Lab of the NWS. To deal with the problem of ill conditioning, we employ a regularization approach that constrains the search space using information contained in a priori estimates of the spatially distributed parameter f...
A SCREENING MODEL FOR EFFECTS OF LAND-DISPOSED WASTES ON GROUNDWATER QUALITY
Ünlü, Kahraman; PARKER, JC; STEVENS, D; CHONG, PK; KAMIL, I (Elsevier BV, 1992-10-01)
This paper describes a screening model for evaluating the migration of organic and inorganic contaminants leached from land-disposed wastes. The model is composed of a waste-zone release submodel, an unsaturated-zone transport submodel and a saturated-zone transport submodel. The waste-zone submodel assumes steady one-dimensional vertical flow through a uniform waste zone treated as a "stirred tank reactor". Soluble inorganic contaminants are assumed to exhibit a constant concentration in the leachate until...
Alternative solutions for long missing streamflow data for sustainable water resources management
Mesta, Buket; Akgün, Ömer Burak; Kentel Erdoğan, Elçin (Informa UK Limited, 2020-08-01)
Sustainable water resources management requires long time series of streamflow data. In this study, a Takagi-Sugeno fuzzy rule-based (FRB) model is developed to reconstruct long periods of missing daily streamflow data which is a common problem in developing countries. The FRB model uses observations of neighbouring stream gauges, and thus is advantageous regarding data and time requirement compared to physical models. With the proper set of inputs, the FRB model provides better estimates than the hydrologi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Koruk, K. K. Yılmaz, S. Z. Akyürek, and A. Binley, “A multi-technique approach to determine temporal and spatial variability of groundwater-stream water exchange,”
HYDROLOGICAL PROCESSES
, pp. 2612–2627, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42222.