Optimum tank size for a rainwater harvesting system: Case study for Northern Cyprus

2019-01-01
Ruso, Mustafa
Akintug, Bertug
Kentel Erdoğan, Elçin
The available freshwater is limited on earth. On the other hand, available water resources on earth have been depleting and being polluted due to climate change and population growth. In order to reduce the risk of water scarcity and water resources contamination, Integrated water resources management (IWRM) is required. IWRM is a concept to manage water resources that aims to balance economic efficiency, social equity, and environmental sustainability. When rainwater harvesting systems (RWHS), one of the techniques of IWRM, are implemented, the stress on water resources is reduced. Since the installation cost of rainwater harvesting systems significantly depends on the size of the rainwater storage tanks, in the implementation of rainwater harvesting, the selection of tank size is one of the main concerns for the feasibility of the system. This study aims to investigate the feasibility of domestic rainwater harvesting systems for a single house. In order to find the optimum storage tank size of the rainwater harvesting system, a linear programming (LP) optimization model is employed. As a case study, the LP model is applied to six regions from semi-arid Eastern Mediterranean island Northern Cyprus, where water resources are limited. The model considers thirty-seven years monthly rainfall data, the roof area of the building, the water consumption per capita, the discount rate, the cost of the rainwater storage tank, and the number of residents. The results of the selected study areas show that the implementation of the RWHS for a single house is infeasible due to the substantial installation costs and maintenance expenses. The financial losses caused by the implementation of the RWHS are found higher than the installation costs and maintenance expenses for all regions. In addition to economic analyses, environmental benefits of the RWHS should be included into the feasibility analysis.

Suggestions

Coupled wastewater treatment and CO₂ mitigation by microalgal (Chlorella Vulgaris) cultures
Çaylı, Direniş; Demirer, Göksel Niyazi; Bayramoğlu, Tuba Hande; Department of Earth System Science (2017)
Eutrophication, ecosystem damage and poor water quality predominantly are among the major problems which are brought about by excess nitrogen and phosphorus discharged to receiving environments by different wastewaters. Nutrient (mainly nitrogen and phosphorus) removal from wastewaters is still an unsolved problem in many countries, including Turkey. For example, the ratio of wastewaters which are subjected to tertiary (advanced) wastewater treatment is around 38.3% (Turkish Statistical Institute, 2012). Th...
Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas
Brosset, Pablo; et. al. (2017-02-01)
Small pelagic fish are among the most ecologically and economically important marine fish species and are characterized by large fluctuations all over the world. In the Mediterranean Sea, low catches and biomass of anchovies and sardines have been described in some areas during the last decade, resulting in important fisheries crises. Therefore, we studied anchovy and sardine body condition variability, a key index of population health and its response to environmental and anthropogenic changes. Wide tempor...
Energy-based top-down and bottom-up relationships between fish community energy demand or production and phytoplankton across lakes at a continental scale
Bartrons, Mireia; Mehner, Thomas; Argillier, Christine; Beklioğlu, Meryem; Blabolil, Petr; Hesthagen, Trygve; Sweden, Kerstin Holmgren; Jeppesen, Erik; Krause, Teet; Podgornik, Samo; Volta, Pietro; Winfield, Ian J.; Brucet, Sandra (Wiley, 2020-04-01)
Fish community feeding and production rates may differ between lakes despite similar fish biomass levels because of differences in size structure and local temperature. Therefore, across-lake comparisons of the strength and direction of top-down and bottom-up fish-phytoplankton relationships should consider these factors. We used the metabolic theory of ecology to calculate size- and temperature-corrected community energy demand (CEDom) and community production (CP) of omnivorous fishes in 227 European lake...
Experimental and numerical studies on fire in tunnels
Çelik, Alper; Yozgatlıgil, Ahmet; Department of Mechanical Engineering (2011)
Fire is a complex phenomenon including many parameters. The nature of fire makes it a very dangerous and hazardous. For many reasons the number of tunnels are increasing on earth and fire safety is one of the major problem related to tunnels. This makes important to predict and understand the behavior of fire, i.e., heat release rate, smoke movement, ventilation effect etc. The literature includes many experimental and numerical analyses for different conditions for tunnel fires. This study investigates poo...
Decadal changes in zooplankton biomass, composition, and body mass in four shallow brackish lakes in Denmark subjected to varying degrees of eutrophication
He, Hu; Jeppesen, Erik; Bruhn, Dan; Yde, Morten; Hansen, Jacob Kjerulf; Spanggaard, Lasse; Madsen, Niels; Liu, Wei; Sondergaard, Martin; Lauridsen, Torben L. (Informa UK Limited, 2020-04-01)
During the past century, many brackish shallow lakes worldwide have become eutrophic. How the zooplankton have responded to this development is not well elucidated. Here, we analysed the decadal changes (from 1999-2000 to 2017-2018) in zooplankton biomass, body mass, and potential top-down control on phytoplankton during summer in 4 Danish shallow brackish lakes (Lund Fjord, Han Vejle, Selbjerg, and Glombak) subjected to varying degrees of eutrophication. Significant reductions of zooplankton biomass, body ...
Citation Formats
M. Ruso, B. Akintug, and E. Kentel Erdoğan, “Optimum tank size for a rainwater harvesting system: Case study for Northern Cyprus,” 2019, vol. 297, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42246.