Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A novel deep learning approach for classification of EEG motor imagery signals
Date
2017-02-01
Author
TABAR, Yousef Rezaei
Halıcı, Uğur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
14
views
0
downloads
Objective. Signal classification is an important issue in brain computer interface (BCI) systems. Deep learning approaches have been used successfully in many recent studies to learn features and classify different types of data. However, the number of studies that employ these approaches on BCI applications is very limited. In this study we aim to use deep learning methods to improve classification performance of EEG motor imagery signals. Approach. In this study we investigate convolutional neural networks (CNN) and stacked autoencoders (SAE) to classify EEG Motor Imagery signals. A new form of input is introduced to combine time, frequency and location information extracted from EEG signal and it is used in CNN having one 1D convolutional and one max-pooling layers. We also proposed a new deep network by combining CNN and SAE. In this network, the features that are extracted in CNN are classified through the deep network SAE. Main results. The classification performance obtained by the proposed method on BCI competition IV dataset 2b in terms of kappa value is 0.547. Our approach yields 9% improvement over the winner algorithm of the competition. Significance. Our results show that deep learning methods provide better classification performance compared to other state of art approaches. These methods can be applied successfully to BCI systems where the amount of data is large due to daily recording.
Subject Keywords
Cellular and Molecular Neuroscience
,
Biomedical Engineering
URI
https://hdl.handle.net/11511/42257
Journal
JOURNAL OF NEURAL ENGINEERING
DOI
https://doi.org/10.1088/1741-2560/14/1/016003
Collections
Department of Electrical and Electronics Engineering, Article