Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimating tectonic history through basin simulation-enhanced seismic inversion: geoinfomatics for sedimentary basins
Download
index.pdf
Date
2004-01-01
Author
Tandon, K
Tuncay, Kağan
Hubbard, K
Comer, J
Ortoleva, P
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters- but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin.
Subject Keywords
Geochemistry and Petrology
,
Geophysics
URI
https://hdl.handle.net/11511/42269
Journal
GEOPHYSICAL JOURNAL INTERNATIONAL
DOI
https://doi.org/10.1111/j.1365-246x.2004.02126.x
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Evaluation of Site Response with Alternative Methods: A Case Study for Engineering Implications
Sisman, Fatma Nurten; Askan Gündoğan, Ayşegül; Asten, Michael (Springer Science and Business Media LLC, 2018-01-01)
In this paper, efficiency of alternative geophysical techniques for site response is evaluated in two sedimentary basins on the North Anatolian Fault Zone. For this purpose, fundamental frequencies of soils and corresponding amplitudes obtained from empirical horizontal-to-vertical spectral ratio curves from microtremors, weak motions and strong motions are compared with results from one-dimensional theoretical transfer functions. Theoretical transfer functions are computed using S-wave velocity profiles de...
Sensitivity Study of Hydrodynamic Parameters During Numerical Simulations of Tsunami Inundation
Ozer, Ceren; Yalçıner, Ahmet Cevdet (Springer Science and Business Media LLC, 2011-11-01)
This paper describes the analysis of a parameter, "hydrodynamic demand,'' which can be used to represent the potential for tsunami drag force related damage to structures along coastlines. It is derived from the ratio of drag force to hydrostatic force caused by a tsunami on the structure. It varies according to the instantaneous values of the current velocities and flow depths during a tsunami inundation. To examine the effects of a tsunami in the present study, the analyses were performed using the tsunam...
Time domain Gauss-Newton seismic waveform inversion in elastic media
Sheen, Dong-Hoon; Tuncay, Kağan; Baag, Chang-Eob; Ortoleva, Peter J. (Oxford University Press (OUP), 2006-12-01)
We present a seismic waveform inversion methodology based on the Gauss-Newton method from pre-stack seismic data. The inversion employs a staggered-grid finite difference solution of the 2-D elastic wave equation in the time domain, allowing accurate simulation of all possible waves in elastic media. The partial derivatives for the Gauss-Newton method are obtained from the differential equation of the wave equation in terms of model parameters. The resulting wave equation and virtual sources from the recipr...
Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures
Askan Gündoğan, Ayşegül; Bielak, Jacobo; Ghattas, Omar (Seismological Society of America (SSA), 2007-12-01)
We present a least-squares optimization method for solving the nonlinear full waveform inverse problem of determining the crustal velocity and intrinsic attenuation properties of sedimentary valleys in earthquake-prone regions. Given a known earthquake source and a set of seismograms generated by the source, the inverse problem is to reconstruct the anelastic properties of a heterogeneous medium with possibly discontinuous wave velocities. The inverse problem is formulated as a constrained optimization prob...
Sea level variability at Antalya and Mentes tide gauges in Turkey: atmospheric, steric and land motion contributions
Simav, Mehmet; Yildiz, Hasan; Turkezer, Ali; Lenk, Onur; Ozsoy, Emin (Springer Science and Business Media LLC, 2012-01-01)
Sea level trends and interannual variability at Antalya and Mentes tide gauges are investigated during the 1985-2001 period, quantifying the roles of atmospheric, steric and local land motion contributions. Tide gauge sea level measurements, temperature/salinity climatologies and GPS data are used in the analyses and the results are compared with the output of a barotropic model forced by atmospheric pressure and wind. The overall sea level trends at two tide gauges collocated with GPS are in the range of 5...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Tandon, K. Tuncay, K. Hubbard, J. Comer, and P. Ortoleva, “Estimating tectonic history through basin simulation-enhanced seismic inversion: geoinfomatics for sedimentary basins,”
GEOPHYSICAL JOURNAL INTERNATIONAL
, pp. 129–139, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42269.