Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Implementation Studies of Robot Swarm Navigation Using Potential Functions and Panel Methods
Date
2016-10-01
Author
Merheb, Abdel-Razzak
GAZİ, VEYSEL
Sezer Uzol, Nilay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
261
views
0
downloads
Cite This
This paper presents a practical swarm navigation algorithm based on potential functions and properties of inviscid incompressible flows. Panel methods are used to solve the flow equations around complex shaped obstacles and to generate the flowlines, which provide collision-free paths to the goal position. Safe swarm navigation is achieved by following the generated streamlines. Potential functions are used to achieve and maintain group cohesion or a geometric formation during navigation. The algorithm is implemented and tested through numerical simulations, as well as experimental implementations on real robots in a laboratory environment in two settings, in which the flowlines are calculated either offline or in real time. The algorithm is easy to implement and can serve as an effective tool for cohesive navigation of robotic swarms.
Subject Keywords
Autonomous Navigation
,
Cohesive Motion
,
Flow/Stream Functions
,
Formation Control
,
Multiagent Dynamic Systems
,
Panel Methods
,
Potential Functions
,
Robot Swarm
URI
https://hdl.handle.net/11511/42310
Journal
IEEE-ASME TRANSACTIONS ON MECHATRONICS
DOI
https://doi.org/10.1109/tmech.2016.2580303
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Multi-objective decision making using fuzzy discrete event systems: A mobile robot example
Boutalis, Yiannis; Schmidt, Klaus Verner (2010-09-29)
In this paper, we propose an approach for the multi-objective control of sampled data systems that can be modeled as fuzzy discrete event systems (FDES). In our work, the choice of a fuzzy system representation is justified by the assumption of a controller realization that depends on various potentially imprecise sensor measurements. Our approach consists of three basic steps that are performed in each sampling instant. First, the current fuzzy state of the system is determined by a sensor evaluation. Seco...
Convergence performance of the approximate factorization methods with multi-block implicit boundary conditions at hypersonic speeds
Koca, Melikşah; Eyi, Sinan; Department of Aerospace Engineering (2022-9)
This thesis study presents convergence characteristics of the implicit approximate factorization methods at hypersonic flow conditions and with 2-dimensional and 3-dimensional geometries. The efficiency of the implicit boundary conditions at block interfaces for the multi-block grids is investigated for different approximate factorization methods. Standard Alternating Direction Implicit (ADI) method, Diagonal Dominant Alternating Direction Implicit method (DDADI) with and without Huang’s sub-iteration corre...
Cooperative terrain based navigation and coverage identification using consensus
Kasebzadeh, Parinaz; Fritsche, Carsten; Özkan, Emre; Gunnarsson, Fredrik; Gustafsson, Fredrik ( Institute of Electrical and Electronics Engineers Inc.; 2015-07-06)
This paper presents a distributed online method for joint state and parameter estimation in a Jump Markov NonLinear System based on a distributed recursive Expectation Maximization algorithm. State inference is enabled via the use of Rao-Blackwellized Particle Filter and, for the parameter estimation, the E-step is performed independently at each sensor with the calculation of local sufficient statistics. An average consensus algorithm is used to diffuse local sufficient statistics to neighbors and approxim...
Efficient Computation of Green's Functions for Multilayer Media in the Context of 5G Applications
Mittra, Raj; Özgün, Özlem; Li, Chao; Kuzuoğlu, Mustafa (2021-03-22)
This paper presents a novel method for effective computation of Sommerfeld integrals which arise in problems involving antennas or scatterers embedded in planar multilayered media. Sommerfeld integrals that need to be computed in the evaluation of spatial-domain Green's functions are often highly oscillatory and slowly decaying. For this reason, standard numerical integration methods are not efficient for such integrals, especially at millimeter waves. The main motivation of the proposed method is to comput...
Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A.-R. Merheb, V. GAZİ, and N. Sezer Uzol, “Implementation Studies of Robot Swarm Navigation Using Potential Functions and Panel Methods,”
IEEE-ASME TRANSACTIONS ON MECHATRONICS
, pp. 2556–2567, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42310.