Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MONTE-CARLO STUDIES OF BINARY-MIXTURES - A FAST ALGORITHM FOR EQUILIBRATION
Date
1991-11-29
Author
Karaaslan, Hasan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
136
views
0
downloads
Cite This
An algorithm for speeding up the equilibration process of Monte Carlo simulations of multicomponent mixtures is presented. For the low-density mixtures, the method relies on an automatic scaling of the maximum-allowed-displacement (MAD) of each particle based on individual acceptance ratios. An exchange- and/or displacement-type motion is then introduced for the high-density mixtures. For a binary mixture of 864 Lennard-Jones particles, it is shown that a faster and smoother convergences to the equilibration is reached independently of the initial guess for the size of MAD, even when the number density of the solution is high.
Subject Keywords
Physical and Theoretical Chemistry
,
General Physics and Astronomy
URI
https://hdl.handle.net/11511/42413
Journal
CHEMICAL PHYSICS LETTERS
DOI
https://doi.org/10.1016/0009-2614(91)90476-p
Collections
Department of Computer Education and Instructional Technology, Article
Suggestions
OpenMETU
Core
Classical density functional theory of orientational order at interfaces: Application to water
Jaqaman, K; Tuncay, Kağan; Ortoleva, PJ (AIP Publishing, 2004-01-08)
A classical density functional formalism has been developed to predict the position-orientation number density of structured fluids. It is applied to the liquid-vapor interface of pure water, where it consists of a classical term, a gradient correction, and an anisotropic term that yields order through density gradients. The model is calibrated to predict that water molecules have their dipole moments almost parallel to a planar interface, while the molecular plane is parallel to it on the liquid side and p...
Vibrational spectroscopy of hydrogen-bonded systems: Six-dimensional simulation of the IR spectrum of F-(H2O) complex
Toffolı, Danıele; Sparta, Manuel; Christiansen, Ove (Elsevier BV, 2011-06-24)
The vibrational dynamics of the F-(H2O) complex is studied using highly accurate six-dimensional molecular potential energy and dipole moment surfaces calculated at the CCSD (T)/cc-pVQZ and CCSD (T)/augcc-pVTZ levels with a multiresolution approach. The extent of mode-coupling is investigated with full vibrational configuration-interaction (FVCI) calculations. Coriolis coupling effects are also included with the aim to obtain quantitative agreement with the experimental data available. The vibrational absor...
Pseudospin and Spin Symmetric Solutions of the Dirac Equation: Hellmann Potential, Wei-Hua Potential, Varshni Potential
Arda, Altug; Sever, Ramazan (Walter de Gruyter GmbH, 2014-03-01)
Approximate analytical solutions of the Dirac equation are obtained for the Hellmann potential, the Wei-Hua potential, and the Varshni potential with any K-value for the cases having the Dirac equation pseudospin and spin symmetries. Closed forms of the energy eigenvalue equations and the spinor wave functions are obtained by using the Nikiforov-Uvarov method and some tables are given to see the dependence of the energy eigenvalues on different quantum number pairs (n, K).
Mesoscopic nonequilibrium thermodynamics of solid surfaces and interfaces with triple junction singularities under the capillary and electromigration forces in anisotropic three-dimensional space
Ogurtani, TO (AIP Publishing, 2006-04-14)
A theory of irreversible thermodynamics of curved surfaces and interfaces with triple junction singularities is elaborated to give a full consideration of the effects of the specific surface Gibbs free energy anisotropy in addition to the diffusional anisotropy, on the morphological evolution of surfaces and interfaces in crystalline solids. To entangle this intricate problem, the internal entropy production associated with arbitrary virtual displacements of triple junction and ordinary points on the interf...
Algebraic approaches to eigenvalue equations: The Wronskian method
Yurtsever, Ersin (Elsevier BV, 1987-11)
A recently proposed method for the solution of eigenvalue equations is applied to two different model potentials. Considerable improvements are observed if the algebraic requirements of the Wronskian method are enforced over a region instead of at a single point.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Karaaslan, “MONTE-CARLO STUDIES OF BINARY-MIXTURES - A FAST ALGORITHM FOR EQUILIBRATION,”
CHEMICAL PHYSICS LETTERS
, pp. 8–12, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42413.