Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Homomorphisms from mapping class groups
Download
index.pdf
Date
2005-04-01
Author
Harvey, WJ
Korkmaz, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
51
downloads
Cite This
This paper concerns rigidity of the mapping class groups. It is shown that any homomorphism phi: Mod(g) -> Mod(h) between mapping class groups of closed orientable surfaces with distinct genera g > h is trivial if g >= 3, and has finite cyclic image for all g >= 1. Some implications are drawn for more general homomorphs of these groups.
Subject Keywords
General Mathematics
URI
https://hdl.handle.net/11511/42446
Journal
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
DOI
https://doi.org/10.1112/s0024609304003911
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Geometric characterizations of existentially closed fields with operators
Pierce, D (Duke University Press, 2004-12-01)
This paper concerns the basic model-theory of fields of arbitrary characteristic with operators. Simplified geometric axioms are given for the model-companion of the theory of fields with a derivation. These axioms generalize to the case of several commuting derivations. Let a D-field be a field with a derivation or a difference-operator, called D. The theory of D-fields is companionable. The existentially closed D-fields can be characterized geometrically without distinguishing the two cases in which D can...
On the Krall-type polynomials on q-quadratic lattices
Alvarez-Nodarse, R.; Adiguzel, R. Sevinik (Elsevier BV, 2011-08-01)
In this paper, we study the Krall-type polynomials on non-uniform lattices. For these polynomials the second order linear difference equation, q-basic series representation and three-term recurrence relations are obtained. In particular, the q-Racah-Krall polynomials obtained via the addition of two mass points to the weight function of the non-standard q-Racah polynomials at the ends of the interval of orthogonality are considered in detail. Some important limit cases are also discussed. (C) 2011 Royal Net...
NONCOMMUTATIVE MACKEY THEOREM
Dosi, Anar (World Scientific Pub Co Pte Lt, 2011-04-01)
In this note we investigate quantizations of the weak topology associated with a pair of dual linear spaces. We prove that the weak topology admits only one quantization called the weak quantum topology, and that weakly matrix bounded sets are precisely the min-bounded sets with respect to any polynormed topology compatible with the given duality. The technique of this paper allows us to obtain an operator space proof of the noncommutative bipolar theorem.
Intelligent analysis of chaos roughness in regularity of walk for a two legged robot
Kaygisiz, BH; Erkmen, İsmet; Erkmen, Aydan Müşerref (Elsevier BV, 2006-07-01)
We describe in this paper a new approach to the identification of the chaotic boundaries of regular (periodic and quasiperiodic) regions in nonlinear systems, using cell mapping equipped with measures of fractal dimension and rough sets. The proposed fractal-rough set approach considers a state space divided into cells where cell trajectories are determined using cell to cell mapping technique. All image cells in the state space, equipped with their individual fractal dimension are then classified as being ...
On symplectic quotients of K3 surfaces
Cinkir, Z; Onsiper, H (Elsevier BV, 2000-12-18)
In this note, we construct generalized Shioda-Inose structures on K3 surfaces using cyclic covers and almost functoriality of Shioda-Inose structures with respect to normal subgroups of a given group of symplectic automorphisms.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
W. Harvey and M. Korkmaz, “Homomorphisms from mapping class groups,”
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
, pp. 275–284, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42446.