Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Greedy Reduction Algorithms for Mixtures of Exponential Family
Date
2015-06-01
Author
Ardeshiri, Tohid
Granstrom, Karl
Özkan, Emre
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
152
views
0
downloads
Cite This
In this letter, we propose a general framework for greedy reduction of mixture densities of exponential family. The performances of the generalized algorithms are illustrated both on an artificial example where randomly generated mixture densities are reduced and on a target tracking scenario where the reduction is carried out in the recursion of a Gaussian inverse Wishart probability hypothesis density (PHD) filter.
Subject Keywords
Exponential Family
,
Extended Target
,
Integral Square Error
,
Kullback-Leibler Divergence
,
Mixture Density
,
Mixture Reduction
,
Target Tracking
URI
https://hdl.handle.net/11511/42511
Journal
IEEE SIGNAL PROCESSING LETTERS
DOI
https://doi.org/10.1109/lsp.2014.2367154
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Geometric characterizations of existentially closed fields with operators
Pierce, D (Duke University Press, 2004-12-01)
This paper concerns the basic model-theory of fields of arbitrary characteristic with operators. Simplified geometric axioms are given for the model-companion of the theory of fields with a derivation. These axioms generalize to the case of several commuting derivations. Let a D-field be a field with a derivation or a difference-operator, called D. The theory of D-fields is companionable. The existentially closed D-fields can be characterized geometrically without distinguishing the two cases in which D can...
Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns
Malas, Tahir; Ergül, Özgür Salih; Gurel, Levent (2007-11-09)
We propose novel parallel preconditioning schemes for the iterative solution of integral equation methods. In particular, we try to improve convergence rate of the ill-conditioned linear systems formulated by the electric-field integral equation, which is the only integral-equation formulation for targets having open surfaces. For moderate-size problems, iterative solution of the neat-field system enables much faster convergence compared to the widely used sparse approximate inverse preconditioner. For larg...
Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2012-03-01)
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
Properties of triply heavy spin-3/2 baryons
Alıyev, Tahmasıb; Savcı, Mustafa (IOP Publishing, 2014-06-01)
The masses and residues of the triply heavy spin-3/2 baryons are calculated in framework of the QCD sum rule approach. The obtained results are compared with the existing theoretical predictions in the literature.
Optimal Control of Diffusion Convection Reaction Equations Using Upwind Symmetric Interior Penalty Galerkin SIPG Method
Karasözen, Bülent; Yücel, Hamdullah (2012-05-01)
We discuss the numerical solution of linear quadratic optimal control problem with distributed and Robin boundary controls governed by diffusion convection reaction equations. The discretization is based on the upwind symmetric interior penalty Galerkin (SIPG) methods which lead to the same discrete scheme for the optimize-then-discretize and the discretize-then-optimize.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Ardeshiri, K. Granstrom, E. Özkan, and U. Orguner, “Greedy Reduction Algorithms for Mixtures of Exponential Family,”
IEEE SIGNAL PROCESSING LETTERS
, pp. 676–680, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42511.