Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
Date
2012-03-01
Author
ÖZBEKLER, ABDULLAH
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
68
views
0
downloads
Cite This
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
Subject Keywords
Oscillation
,
Impulse
,
Half-linear
,
Periodic
URI
https://hdl.handle.net/11511/57865
Journal
APPLIED MATHEMATICS LETTERS
DOI
https://doi.org/10.1016/j.aml.2011.09.001
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Forced Oscillation of Second-Order Impulsive Differential Equations with Mixed Nonlinearities
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-07-08)
In this paper we give new oscillation criteria for a class of second-order mixed nonlinear impulsive differential equations having fixed moments of impulse actions. The method is based on the existence of a nonprincipal solution of a related second-order linear homogeneous equation.
SECOND ORDER OSCILLATION OF MIXED NONLINEAR DYNAMIC EQUATIONS WITH SEVERAL POSITIVE AND NEGATIVE COEFFICIENTS
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-09-01)
New oscillation criteria are obtained for superlinear and sublinear forced dynamic equations having positive and negative coefficients by means of nonprincipal solutions.
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Thermodynamic quantities for the Klein-Gordon equation with a linear plus inverse-linear potential: Biconfluent Heun functions
Arda, Altug; TEZCAN, CEVDET; Sever, Ramazan (2017-02-01)
We study some thermodynamic quantities for the Klein-Gordon equation with a linear plus inverse-linear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation. We use a method based on the Euler-MacLaurin formula to analytically compute the thermal functions by considering only the contribution of positive part of the spectrum to the partition function.
Forced oscillation of super-half-linear impulsive differential equations
Oezbekler, A.; Zafer, Ağacık (Elsevier BV, 2007-09-01)
By using a Picone type formula in comparison with oscillatory unforced half-linear equations, we derive new oscillation criteria for second order forced super-half-linear impulsive differential equations having fixed moments of impulse actions. In the superlinear case, the effect of a damping term is also considered.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. ÖZBEKLER and A. Zafer, “Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients,”
APPLIED MATHEMATICS LETTERS
, pp. 294–300, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57865.