Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
Date
2012-03-01
Author
ÖZBEKLER, ABDULLAH
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
231
views
0
downloads
Cite This
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
Subject Keywords
Oscillation
,
Impulse
,
Half-linear
,
Periodic
URI
https://hdl.handle.net/11511/57865
Journal
APPLIED MATHEMATICS LETTERS
DOI
https://doi.org/10.1016/j.aml.2011.09.001
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Forced Oscillation of Second-Order Impulsive Differential Equations with Mixed Nonlinearities
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-07-08)
In this paper we give new oscillation criteria for a class of second-order mixed nonlinear impulsive differential equations having fixed moments of impulse actions. The method is based on the existence of a nonprincipal solution of a related second-order linear homogeneous equation.
SECOND ORDER OSCILLATION OF MIXED NONLINEAR DYNAMIC EQUATIONS WITH SEVERAL POSITIVE AND NEGATIVE COEFFICIENTS
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-09-01)
New oscillation criteria are obtained for superlinear and sublinear forced dynamic equations having positive and negative coefficients by means of nonprincipal solutions.
Stability criteria for linear periodic impulsive Hamiltonian systems
Guseinov, G. Sh.; Zafer, Ağacık (2007-11-15)
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
PICONE TYPE FORMULA FOR NON-SELFADJOINT IMPULSIVE DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS SOLUTIONS
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2010-01-01)
A Picone type formula for second order linear non-selfadjoint impulsive differential equations with discontinuous solutions having fixed moments of impulse actions is derived. Applying the formula, Leighton and Sturm-Picone type comparison theorems as well as several oscillation criteria for impulsive differential equations are obtained.
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. ÖZBEKLER and A. Zafer, “Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients,”
APPLIED MATHEMATICS LETTERS
, pp. 294–300, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57865.