Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients

2012-03-01
ÖZBEKLER, ABDULLAH
Zafer, Ağacık
In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
APPLIED MATHEMATICS LETTERS

Suggestions

Forced Oscillation of Second-Order Impulsive Differential Equations with Mixed Nonlinearities
ÖZBEKLER, ABDULLAH; Zafer, Ağacık (2011-07-08)
In this paper we give new oscillation criteria for a class of second-order mixed nonlinear impulsive differential equations having fixed moments of impulse actions. The method is based on the existence of a nonprincipal solution of a related second-order linear homogeneous equation.
Stability criteria for linear periodic impulsive Hamiltonian systems
Guseinov, G. Sh.; Zafer, Ağacık (2007-11-15)
In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
On periodic solutions of linear impulsive delay differential systems
Akhmet, Marat; Alzabut, J.O.; Zafer, Ağacık (2008-10-01)
A necessary and sufficient condition is established for the existence of periodic solutions of linear impulsive delay differential systems. Copyright © 2008 Watam Press.
Stability criteria for linear Hamiltonian systems under impulsive perturbations
Kayar, Z.; Zafer, Ağacık (2014-03-01)
Stability criteria are given for planar linear periodic Hamiltonian systems with impulse effect by making use of a Lyapunov type inequality. A disconjugacy criterion is also established. The results improve the related ones in the literature for such systems.
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Citation Formats
A. ÖZBEKLER and A. Zafer, “Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients,” APPLIED MATHEMATICS LETTERS, pp. 294–300, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57865.