Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
REACTIVITY OF MARBLE WASTES FOR POTENTIAL UTILIZATION IN WET FLUE GAS DESULPHURIZATION
Date
2016-01-01
Author
Altun, Naci Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
153
views
0
downloads
Cite This
Wastes of most marble types are distinguished with their superior CaCO3 content and potential to utilize them as an alternative to limestone. Control of SO2 using marble wastes in wet flue gas desulphurization (WFGD) units of coal fired thermal power plants is an important opportunity. In this study, nine types of marble wastes were evaluated in terms of their ability to dissolution (reactivity) in an acidic environment. The reactivity was expressed as fractional conversion with time with respect to the chemical composition and particle distribution of wastes as well as temperature and pH of solution. Dissolution reaction rate constants were also computed. Reactivity of the wastes varied significantly with chemical compositions of the marble types. The same marble type displayed different dissolution profiles as a function of test conditions (fineness, temperature, pH). Higher contents of CaCO3 and Fe2O3 positively influenced dissolution ability and rates, whereas increased MgCO3 content had adverse effects. The changes in particle size, temperature and pH influenced the reactivity. The reactivity increased with decreasing particle size. Also, higher temperature and increased acidity favored dissolution ability of the marble wastes. Our results showed that under optimized conditions marble wastes, having a higher content of CaCO3 and low content of MgCO3, are potential SO2 sorbent alternative.
Subject Keywords
Desulphurization
,
SO2
,
Thermal power production
,
Marble
,
Reactivity
URI
https://hdl.handle.net/11511/42567
Journal
PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING
DOI
https://doi.org/10.5277/ppmp160140
Collections
Department of Mining Engineering, Article
Suggestions
OpenMETU
Core
Hydration and properties of limestone incorporated cementitious systems
Erdoğdu, Korhan; Tokyay, Mustafa; Department of Civil Engineering (2002)
As limestone is a new widely used mineral addition in cement, understanding the effects of this material on cement properties and hydration in a detailed manner is of substantial importance for efficient and proper usage. Consequently, the current study is designed. In the experiemental study, three different limestones were used. The aim of using different limestones is to reach broad generalisations by crosschecking the results and compare the effects of limestones with different structures. These limesto...
USE OF GANGUE KAOLINS FROM COAL DEPOSITS IN SYNTHETIC ZEOLITE PRODUCTION
Kutlu, Burak Temel; Toksoy Köksal, Fatma; Akata Kurç, Burcu; Department of Geological Engineering (2022-8-29)
Kaolin is a mineral with industrial value and can be used as a raw material in different areas. In most uses, pure quality kaolin is required. However, not all the kaolin occurrences are pure as much as needed and additional processes are applied before use. Nevertheless, some occurrences are accepted as gangue material due to their poor quality and low reserve. Kaolin-rich layers are widespread in coal deposits, but their quality is low. The presence of clay-rich layers with kaolin content in coal deposits...
Pyritic Tailings as a Source of Plant Micronutrients in Calcareous Soils
TOZSİN, Gülşen; Arol, Ali İhsan (2015-07-04)
Pyrite (FeS2) is usually a waste from complex sulfide ores. Yet, it may be a remediation additive for calcareous soils deficient in iron (Fe) and other micronutrients such as copper (Cu), zinc (Zn), and manganese (Mn). In this study, leaching experiments were conducted under laboratory conditions and a 30-day pot trial (with wheat) to evaluate the effect of applying different amounts of pyritic tailings on micronutrient and heavy-metal concentrations in a calcareous soil and on crop growth (dry-matter produ...
Comparative study of soil water characteristic curve prediction methods
Ahmadiadli, Mohammad; Huvaj Sarıhan, Nejan; Toker, Nabi Kartal; Kürkçü, Mefküre Gamze (2012-06-30)
The soil-water characteristic curve (SWCC), which defines the relation between soil suction and water content, plays a key role in geotechnical studies of the unsaturated soils. Some researchers such as Brooks & Corey (1968), Van Genuchten (1982) and Fredlund& Xing (1994) have proposed curve fitting equations for SWCC. Fitting equations to the laboratory test data obtained from direct measurement of water content versus changes in matric suction is the most reliable method, but it is expensive and time cons...
Hydration of alinite cement produced from soda waste sludge
Ucal, Gultekin Ozan; Mahyar, Mandi; Tokyay, Mustafa (2018-03-10)
Alinite cement is an alternative inorganic, low-energy binding material. This experimental study investigated hydration characteristics of alinite cement which was produced by using soda waste sludge as a raw material. Paste microstructures were studied by X-ray powder diffraction and scanning electron microscopy. Heat of hydration and compressive strength values were also determined. Formation of C-S-H gel and calcium chloroaluminate hydrates which resemble Friedel's salt was observed. Induction period of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. E. Altun, “REACTIVITY OF MARBLE WASTES FOR POTENTIAL UTILIZATION IN WET FLUE GAS DESULPHURIZATION,”
PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING
, pp. 497–509, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42567.