Asphaltene deposition during steam-assisted gravity drainage: Effect of non-condensable gases

Canbolat, S
Akın, Serhat
Kovscek, AR
Asphaltene deposition was investigated during laboratory-scale steam-assisted gravity drainage (SAGD) experiments to probe in situ upgrading of a heavy oil. Tests were conducted with and without the addition of non-condensable gases (carbon dioxide or n-butane) to the steam. The apparatus was a three-dimensional scaled physical model packed with crushed limestone saturated with 12.4 degrees API heavy-crude oil. Temperature, pressure, and production data, as well as the asphaltene content of the produced oil, were monitored continuously during the experiments. For small well separations, as the fraction of non-condensable gas in the steam increased, the steam condensation temperature and the steam-oil ratio decreased. As a result of lower temperature, the heavy oil was less mobile in the steam chamber relative to pure steam injection. Thus, the heating period was prolonged and the recovery, as well as the rate of oil recovery, decreased. Asphaltene content of the oil produced as a result of pure steam injection decreased initially showing deposition of asphaltene within the porous matrix of the model. As the steam injection continued, the asphaltene content of the produced oil increased but remained below the initial value. Thus, the produced oil indicated some in situ upgrading. As the carbon dioxide concentration in the steam increased, greater asphaltene deposition occurred; however, no significant change in asphaltene content was found when n-butane was added to the steam. Post-experimental analyses of the porous media for asphaltene content confirmed retention for the pure steam and steam with added CO 2 experiments. Numerical simulation of the asphaltene deposition process using a pure solid deposition model corroborated experimental findings and showed that deposition occurred mainly at the steam-chamber boundary.


Analytical investigation of wet combustion process for heavy oil recovery
Bağcı, Ali Suat (Informa UK Limited, 2004-12-01)
Analysis of combustion tube data produced from experiments performed under realistic reservoir conditions is currently the most valid method of investigating in-situ combustion process. In this study, the optimization of water-air ratio for B. Kozluca heavy crude oil, and the comparison of the performance of dry and wet forward combustion processes were studied. An analytical model was used to extend the laboratory results so that the oil production and steam zone volume can be estimated under field conditi...
Microwave heating of coal for enhanced magnetic removal of pyrite
Uslu, T; Atalay, U (Elsevier BV, 2004-01-15)
Amenability of Askale coal to desulfinization by magnetic separation following microwave heating was investigated. The coal was subjected to magnetic separation at 2 T following the treatment in a microwave oven at 850-W power and 2.45-GHz frequency. The increase in magnetic property by microwave heating at 850 W and 2.45 GHz was not sufficient to enhance the removal of considerable amount pyritic sulfur from the coal by magnetic separation at 2 T. Pyritic sulfur content was reduced by 37.46%. With the addi...
Ballistic properties and burning behaviour of an ammonium perchlorate/guanidine nitrate/sodium nitrate airbag solid propellant
Ulaş, Abdullah; Kuo, K. K. (Elsevier BV, 2006-10-01)
An experimental investigation on the determination of ballistic properties and burning behavior of a composite solid propellant for airbag application was conducted. The experimental results were obtained using a high-pressure optical strand burner. Steady-state burning rates were determined for a pressure range of 20.8-41.5 MPa and initial propellant temperatures of -30 to +80 degrees C. For the pressure and temperature ranges tested, the temperature sensitivity was on the order of 1x10(-3) K-1. The pressu...
Performance prediction of in situ combustion processes
Kök, Mustafa Verşan (Informa UK Limited, 2001-01-01)
In this research, in situ combustion performance calculations were performed using different algorithms, which were based on oil recovery/volume burned correlative methods. The correlations were based on field and laboratory combustion tube results. A computer method was developed and applied to different heavy crude oil fields. The results showed that an in situ combustion process is applicable in these fields if the volume burned is 30% for field 1 and 40% for field 2.
Mathematical modeling of steam-assisted gravity drainage
Akın, Serhat (Society of Petroleum Engineers (SPE), 2005-01-01)
A mathematical model for gravity drainage in heavy-oil reservoirs and tar sands during steam injection in linear geometry is proposed. The mathematical model is based on the experimental observations that the steam-zone shape is an inverted triangle with the vertex fixed at the bottom production well. Both temperature and asphaltene content dependence on the viscosity of the drained heavy oil are considered. The developed model has been validated with experimental data presented in the literature. The heavy...
Citation Formats
S. Canbolat, S. Akın, and A. Kovscek, “Asphaltene deposition during steam-assisted gravity drainage: Effect of non-condensable gases,” PETROLEUM SCIENCE AND TECHNOLOGY, pp. 69–92, 2006, Accessed: 00, 2020. [Online]. Available: