Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
FINITE VOLUME SIMULATION OF 2-D STEADY SQUARE LID DRIVEN CAVITY FLOW AT HIGH REYNOLDS NUMBERS
Download
index.pdf
Date
2013-10-01
Author
YAPICI, KERİM
Uludağ, Yusuf
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
6
downloads
In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re) 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK) is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe) numbers. Furthermore, after Re >= 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.
Subject Keywords
General Chemical Engineering
URI
https://hdl.handle.net/11511/42805
Journal
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING
DOI
https://doi.org/10.1590/s0104-66322013000400023
Collections
Department of Chemical Engineering, Article