Extending The Lossy Spring-Loaded Inverted Pendulum Model with a Slider-Crank Mechanism

Download
2015-07-31
Orhon, H. Eftun
Odabas, Caner
Uyanik, Ismail
Morgul, Omer
Saranlı, Uluç
Spring Loaded Inverted Pendulum (SLIP) model has a long history in describing running behavior in animals and humans as well as has been used as a design basis for robots capable of dynamic locomotion. Anchoring the SLIP for lossy physical systems resulted in newer models which are extended versions of original SLIP with viscous damping in the leg. However, such lossy models require an additional mechanism for pumping energy to the system to control the locomotion and to reach a limit-cycle. Some studies solved this problem by adding an actively controllable torque actuation at the hip joint and this actuation has been successively used in many robotic platforms, such as the popular RHex robot. However, hip torque actuation produces forces on the COM dominantly at forward direction with respect to ground, making height control challenging especially at slow speeds. The situation becomes more severe when the horizontal speed of the robot reaches zero, i.e. steady hoping without moving in horizontal direction, and the system reaches to singularity in which vertical degrees of freedom is completely lost. To this end, we propose an extension of the lossy SLIP model with a slider-crank mechanism, SLIP-SCM, that can generate a stable limit-cycle when the body is constrained to vertical direction. We propose an approximate analytical solution to the nonlinear system dynamics of SLIP-SCM model to characterize its behavior during the locomotion. Finally, we perform a fixed-point stability analysis on SLIP-SCM model using our approximate analytical solution and show that proposed model exhibits stable behavior in our range of interest

Suggestions

An Analytical Solution to the Stance Dynamics of Passive Spring-Loaded Inverted Pendulum with Damping
ANKARALI, M. M.; Arslan, O.; Saranlı, Uluç (2009-09-11)
The Spring-Loaded Inverted Pendulum (SLIP) model has been established both as a very accurate descriptive tool as well as a good basis for the design and control of running robots. In particular, approximate analytic solutions to the otherwise nonintegrable dynamics of this model provide principled ways in which gait controllers can be built, yielding invaluable insight into their stability properties. However, most existing work on the SLIP model completely disregards the effects of damping, which often ca...
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
An Approximate Stance Map of The Spring Mass Hopper with Gravity Correction For Nonsymmetric Locomotions
Arslan, Omuer; Saranlı, Uluç; Morgul, Omer (2009-05-17)
The Spring-Loaded Inverted Pendulum (SLIP) model has long been established as an effective and accurate descriptive model for running animals of widely differing sizes and morphologies, while also serving as a basis for several hopping robot designs. Further research on this model led to the discovery of several analytic approximations to its normally nonintegrable dynamics. However, these approximations mostly focus on steady-state running with symmetric trajectories due to their linearization of gravitati...
Control of quadruped walking behavior through an embedding of spring loaded inverted pendulum template
Yılmaz, Mert Kaan; Saranlı, Uluç; Department of Computer Engineering (2022-8)
Legged robots require complex dynamical behaviours in order to achieve stable, sustainable and efficient locomotion. Due to their mobile nature, they can neither afford to provide extensive computational power, nor use anything but the most energy efficient structural designs and algorithms to achieve stability and speed. Consequently, simple and efficient ways to solve the complex set of problems is one of the key points of focus in legged robot locomotion research. This thesis offers a novel method that u...
Body attitude control of a planar one-legged hopping robot using a novel air drag assisted reaction wheel
Akmandor, Neşet Ünver; Saranlı, Afşar; Yazıcıoğlu, Yiğit; Department of Electrical and Electronics Engineering (2016)
In the literature, spring-loaded inverted pendulum (SLIP) model with damping has been used to represent the dynamics of legged locomotion. Based on a planar version of the model, a group of existing work focus on controlling the hip torque (between body and leg) in stance and in flight phases to generate stable planar locomotion (the SLIP-T model). Most of these studies assume an infinite body inertia such that the applied hip torque does not affect the attitude of the robot body. In practice, for any finit...
Citation Formats
H. E. Orhon, C. Odabas, I. Uyanik, O. Morgul, and U. Saranlı, “Extending The Lossy Spring-Loaded Inverted Pendulum Model with a Slider-Crank Mechanism,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42834.