Control of Underactuated Planar Hexapedal Pronking Through a Dynamically Embedded SLIP Monopod

Download
2010-05-08
Pronking (aka. stotting) is a gait in which all legs are used in synchrony, resulting in long flight phases and large jumping heights that may potentially be useful for mobile robots on rough terrain. Robotic instantiations of this gait suffer from severe pitch instability either due to underactuation, or the lack of sufficient feedback. Nevertheless, the dynamic nature of this gait suggests that the Spring-Loaded Inverted Pendulum Model (SLIP), a very successful predictive model for both natural and robotic runners, would be a good basis for more robust and maneuverable robotic pronking. In this paper, we describe how "template-based control", a controller structure based on the embedding of a simple dynamical "template" within a more complex "anchor" system, can be used to achieve stable and controllable pronking for a planar, underactuated hexapod model. In this context, high-level control of the gait is regulated through speed and height commands to the SLIP template, while the embedding controller based on approximate inverse-dynamics and carefully designed passive dynamics ensures the stability of the remaining degrees of freedom. We show through extensive simulation experiments that unlike existing open-loop alternatives, the resulting control structure provides stability, explicit maneuverability and significant robustness against sensor and actuator noise.

Suggestions

Control of hexapedal pronking through a dynamically embedded spring loaded inverted pendulum template
Ankaralı, Mustafa Mert; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2010)
Pronking is a legged locomotory gait in which all legs are used in synchrony, usually resulting in slow speeds but long flight phases and large jumping heights that may potentially be useful for mobile robots locomoting in cluttered natural environments. Instantiations of this gait for robotic systems suffer from severe pitch instability either due to underactuated leg designs, or the open-loop nature of proposed controllers. Nevertheless, both the kinematic simplicity of this gait and its dynamic nature su...
Control of underactuated planar pronking through an embedded spring-mass Hopper template
Ankaralı, Mustafa Mert; Saranlı, Uluç (Springer Science and Business Media LLC, 2011-02-01)
Autonomous use of legged robots in unstructured, outdoor settings requires dynamically dexterous behaviors to achieve sufficient speed and agility without overly complex and fragile mechanics and actuation. Among such behaviors is the relatively under-studied pronking (aka. stotting), a dynamic gait in which all legs are used in synchrony, usually resulting in relatively slow speeds but long flight phases and large jumping heights. Instantiations of this gait for robotic systems have been mostly limited to ...
Analysis of a UAV that can Hover and Fly Level
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (EDP Sciences; 2016-03-14)
In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-changing capability is analysed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore, named as VTOL-FW. The aircraft is modelled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor a...
Control of Planar Spring-Mass Running Through Virtual Tuning of Radial Leg Damping
Secer, Gorkem; Saranlı, Uluç (Institute of Electrical and Electronics Engineers (IEEE), 2018-10-01)
Existing research on dynamically capable legged robots, particularly those based on spring-mass models, generally considers improving in isolation either the stability and control accuracy on the rough terrain, or the energetic efficiency in steady state. In this paper, we propose a new method to address both, based on the hierarchical embedding of a simple spring-loaded inverted pendulum (SLIP) template model with a tunable radial damping coefficient into a realistic leg structure with series-elastic actua...
Extending The Lossy Spring-Loaded Inverted Pendulum Model with a Slider-Crank Mechanism
Orhon, H. Eftun; Odabas, Caner; Uyanik, Ismail; Morgul, Omer; Saranlı, Uluç (2015-07-31)
Spring Loaded Inverted Pendulum (SLIP) model has a long history in describing running behavior in animals and humans as well as has been used as a design basis for robots capable of dynamic locomotion. Anchoring the SLIP for lossy physical systems resulted in newer models which are extended versions of original SLIP with viscous damping in the leg. However, such lossy models require an additional mechanism for pumping energy to the system to control the locomotion and to reach a limit-cycle. Some studies so...
Citation Formats
M. M. Ankaralı, U. Saranlı, and A. Saranlı, “Control of Underactuated Planar Hexapedal Pronking Through a Dynamically Embedded SLIP Monopod,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47887.