A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters

Chamanian, Salar
Muhtaroglu, Ali
Külah, Haluk
This paper presents a self-adapting synchronized-switch harvesting (SA-SSH) interface circuit to extract energy from vibration-based piezoelectric energy harvesters (PEHs). The implemented circuit utilizes a novel switching technique to recycle optimum amount of harvested charge on piezoelectric capacitance to strengthen the damping force, and simultaneously achieve load-independent energy extraction with a single inductor. Charge recycling is realized by adjusting extraction time, and optimized through a maximum power point tracker based on charge-flipping dissipation. The circuit has been implemented using 180 nm HV CMOS technology with 0.9 x 0.6 mm(2) active area. Self-adapting SSH circuit has been validated with both macro-scaled and MEMS PEHs with different inductor values. The interface circuit provides maximum energy extraction for the full storage voltage range of 1.8-3.7 V. The implementation harnesses have 500% more power compared to an ideal full-bridge rectifier, and output 3.4 mu W for 2.24V peak-to-peak open-circuit piezoelectric voltage from MEMS PEH excited at its resonant frequency.


An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS
Chamanian, Salar; Ulusan, Hasan; Koyuncuoglu, Aziz; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-03-01)
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The circuit interfaces a piezoelectric energy harvesting micro electro-mechanical systems (MEMS) device to scavenge acoustic energy. Synchronous electric charge extraction (SECE) technique is deployed through the implementation of a novel multistage energy extraction (MSEE) circuit in 180 nm HV CMOS technology to harvest and store energy. The circuit is optimized to operate...
Power-Efficient Hybrid Energy Harvesting System for Harnessing Ambient Vibrations
Chamanian, Salar; Çiftci, Berkay; Ulusan, Hasan; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
This paper presents an efficient hybrid energy harvesting interface to synergistically scavenge power from electromagnetic (EM) and piezoelectric (PE) sources, and drive a single load. The EM harvester output is rectified through a self-powered active doubler structure, and stored on a storage capacitor. The stored energy is then transferred to the PE harvester to increase the damping force and charge extraction. The total synergistically extracted power from both harvesters is more than the power obtained ...
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
An electromagnetic micro energy harvester based on an array of parylene cantilevers
Sari, Ibrahim; Balkan, Raif Tuna; Külah, Haluk (IOP Publishing, 2009-10-01)
This paper presents the design, optimization and implementation of an electromagnetic type vibration-to-electrical micro energy harvester. The proposed harvester implements a new design employing array of parylene cantilevers on which planar gold coils are fabricated. The micro harvester generates voltage by virtue of the relative motion between the coils and a stationary magnet. The coils are connected electrically in series to sum up the voltage output from individual cantilevers. The number of cantilever...
Highly efficient dual-band GaN power amplifier utilising pin diode-based tunable harmonic load matching
Kilic, Hasan Huseyin; Demir, Şimşek (Institution of Engineering and Technology (IET), 2019-01-09)
This study presents a tunable dual-band gallium nitride (GaN) power amplifier (PA) operating in L-band. The first band is aimed near the lower edge of the L-band, 1GHz, and the second band is aimed near the upper edge of the L-band, 2GHz, which is located around the second harmonic of the first band. A pin diode-based tunable load matching circuit is proposed and designed in order to present the optimum fundamental and harmonic load impedances to the transistor in both operating bands for maximum efficiency...
Citation Formats
S. Chamanian, A. Muhtaroglu, and H. Külah, “A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters,” IEEE TRANSACTIONS ON POWER ELECTRONICS, pp. 901–912, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42885.