Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS
Download
index.pdf
Date
2019-03-01
Author
Chamanian, Salar
Ulusan, Hasan
Koyuncuoglu, Aziz
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
253
views
178
downloads
Cite This
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The circuit interfaces a piezoelectric energy harvesting micro electro-mechanical systems (MEMS) device to scavenge acoustic energy. Synchronous electric charge extraction (SECE) technique is deployed through the implementation of a novel multistage energy extraction (MSEE) circuit in 180 nm HV CMOS technology to harvest and store energy. The circuit is optimized to operate with minimum power losses when input power is limited, and adapts well to operating conditions with higher input power. The highly accurate peak detector was validated for a wide piezo-electric frequency range from 20 Hz to 4 kHz. A charging efficiency of about 84% has been achieved for 4.75 V open-circuit piezoelectric voltage excited at 390 Hz input vibration under nominal input power range of 30-80 mu W. Power optimizations enable the circuit to maintain a conversion efficiency of 47% at input power level as low as 3.12 mu W. MSEE provides up to 15% efficiency improvement compared to traditional SECE, and maintains power efficiency as high as possible for a wide input power range.
Subject Keywords
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/34697
Journal
IEEE TRANSACTIONS ON POWER ELECTRONICS
DOI
https://doi.org/10.1109/tpel.2018.2841510
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters
Chamanian, Salar; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2020-01-01)
This paper presents a self-adapting synchronized-switch harvesting (SA-SSH) interface circuit to extract energy from vibration-based piezoelectric energy harvesters (PEHs). The implemented circuit utilizes a novel switching technique to recycle optimum amount of harvested charge on piezoelectric capacitance to strengthen the damping force, and simultaneously achieve load-independent energy extraction with a single inductor. Charge recycling is realized by adjusting extraction time, and optimized through a m...
AN ELECTROMAGNETIC MICRO POWER GENERATOR FOR LOW FREQUENCY ENVIRONMENTAL VIBRATIONS BASED ON THE FREQUENCY UP-CONVERSION TECHNIQUE
Sari, Ibrahim; Balkan, Tuna; Külah, Haluk (2009-01-29)
This paper presents an electromagnetic (EM) vibration-to-electrical power generator, which can efficiently harvest energy from low-frequency external vibrations by using frequency up-conversion. The generator can effectively scavenge energy from low frequency environmental vibrations of 70-150 Hz and generates 0.57 mV voltage with 0.25 nW power from a single cantilever at a vibration frequency of 95 Hz. The fabricated generator size is 8.5 x 7 x 2.5 mm(3) and a total number of 20 serially connected cantilev...
Highly efficient dual-band GaN power amplifier utilising pin diode-based tunable harmonic load matching
Kilic, Hasan Huseyin; Demir, Şimşek (Institution of Engineering and Technology (IET), 2019-01-09)
This study presents a tunable dual-band gallium nitride (GaN) power amplifier (PA) operating in L-band. The first band is aimed near the lower edge of the L-band, 1GHz, and the second band is aimed near the upper edge of the L-band, 2GHz, which is located around the second harmonic of the first band. A pin diode-based tunable load matching circuit is proposed and designed in order to present the optimum fundamental and harmonic load impedances to the transistor in both operating bands for maximum efficiency...
An adaptable interface circuit for low power MEMS piezoelectric energy harvesters with multi-stage energy extraction
Chamanian, Salar; Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Kulah, Haluk (IEEE; 2017-10-21)
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The system uses a MEMS piezoelectric energy harvester to scavenge power in 5 μW to 400 μW range. Synchronous electric charge extraction (SECE) technique is utilized to transfer harvested energy to output storage with the help of a novel multi-stage energy extraction (MSEE) circuit. The circuit is optimized in 180nm HV CMOS technology to operate with minimum power losses at ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Chamanian, H. Ulusan, A. Koyuncuoglu, A. Muhtaroglu, and H. Külah, “An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS,”
IEEE TRANSACTIONS ON POWER ELECTRONICS
, pp. 2739–2747, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34697.