Mutation classes of finite type cluster algebras with principal coefficients

2013-06-15
Cluster algebras of finite type is a fundamental class of algebras whose classification is identical to the famous Cartan Killing classification. More recently, Fomin and Zelevinslcy introduced another central notion of cluster algebras with principal coefficients. These algebras are determined combinatorially by mutation classes of certain rectangular matrices. It was conjectured, by Fomin and Zelevinsky, that finite type cluster algebras with principal coefficients are characterized by the mutation classes which are finite. In this paper, we prove this conjecture.
LINEAR ALGEBRA AND ITS APPLICATIONS

Suggestions

Quivers of finite mutation type and skew-symmetric matrices
Seven, Ahmet İrfan (Elsevier BV, 2010-11-01)
Quivers of finite mutation type are certain directed graphs that first arised in Fomin-Zelevinsky's theory of cluster algebras. It has been observed that these quivers are also closely related with different areas of mathematics. In fact, main examples of finite mutation type quivers are the quivers associated with triangulations of surfaces. In this paper, we study structural properties of finite mutation type quivers in relation with the corresponding skew-symmetric matrices. We obtain a characterization ...
The Schur algorithm and reproducing kernel Hilbert spaces in the ball
Alpay, D; Bolotnikov, V; Kaptanoglu, HT (Elsevier BV, 2002-02-15)
Using reproducing kernel Hilbert spaces methods we develop a Schur-type algorithm for a subclass of the functions analytic and contractive in the ball. We also consider the Nevanlinna-Pick interpolation problem in that class. (C) 2002 Elsevier Science Inc. All rights reserved.
Contour approximation of data: A duality theory
İyigün, Cem (Elsevier BV, 2009-05-01)
Given a dataset D partitioned in clusters, the joint distance function (JDF)J(x) at any point x is the harmonic mean of the distances between x and the cluster centers. The JDF is a continuous function, capturing the data points in its lower level sets (a property called contour approximation), and is a useful concept in probabilistic clustering and data analysis.
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
Value sets of Lattes maps over finite fields
Küçüksakallı, Ömer (Elsevier BV, 2014-10-01)
We give an alternative computation of the value sets of Dickson polynomials over finite fields by using a singular cubic curve. Our method is not only simpler but also it can be generalized to the non-singular elliptic case. We determine the value sets of Lattes maps over finite fields which are rational functions induced by isogenies of elliptic curves with complex multiplication.
Citation Formats
A. İ. Seven, “Mutation classes of finite type cluster algebras with principal coefficients,” LINEAR ALGEBRA AND ITS APPLICATIONS, pp. 4584–4594, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42964.