Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Quivers of finite mutation type and skew-symmetric matrices
Download
index.pdf
Date
2010-11-01
Author
Seven, Ahmet İrfan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
6
downloads
Quivers of finite mutation type are certain directed graphs that first arised in Fomin-Zelevinsky's theory of cluster algebras. It has been observed that these quivers are also closely related with different areas of mathematics. In fact, main examples of finite mutation type quivers are the quivers associated with triangulations of surfaces. In this paper, we study structural properties of finite mutation type quivers in relation with the corresponding skew-symmetric matrices. We obtain a characterization of finite mutation type quivers that are associated with triangulations of surfaces and give a new numerical invariant for their mutation classes.
Subject Keywords
Geometry and Topology
,
Algebra and Number Theory
,
Numerical Analysis
,
Discrete Mathematics and Combinatorics
URI
https://hdl.handle.net/11511/39258
Journal
LINEAR ALGEBRA AND ITS APPLICATIONS
DOI
https://doi.org/10.1016/j.laa.2010.04.043
Collections
Department of Mathematics, Article