Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control

Gürel, Sinan
Akturk, M. Selim
Airline schedules are generally tight and fragile to disruptions. Disruptions can have severe effects on existing aircraft routings, crew pairings, and passenger itineraries that lead to high delay and recovery costs. A recovery approach should integrate the recovery decisions for all entities (aircraft, crew, passengers) in the system as recovery decisions about an entity directly affect the others' schedules. Because of the size of airline flight networks and the requirement for quick recovery decisions, the integrated airline recovery problem is highly complex. In the past decade, an increasing effort has been made to integrate passenger and crew related recovery decisions with aircraft recovery decisions both in practice and in the literature. In this paper, we develop a new flight network based representation for the integrated airline recovery problem. Our approach is based on the flow of each aircraft, crew member, and passenger through the flight network of the airline. The proposed network structure allows common recovery decisions such as departure delays, aircraft/crew rerouting, passenger reaccommodation, ticket cancellations, and flight cancellations. Furthermore, we can implement aircraft cruise speed (flight time) decisions on the flight network. For the integrated airline recovery problem defined over this network, we propose a conic quadratic mixed integer programming formulation that can be solved in reasonable CPU times for practical size instances. Moreover, we place a special emphasis on passenger recovery. In addition to aggregation and approximation methods, our model allows explicit modeling of passengers and evaluating a more realistic measure of passenger delay costs. Finally, we propose methods based on the proposed network representation to control the problem size and to deal with large airline networks.


Aircraft Rescheduling with Cruise Speed Control
Akturk, M. Selim; ATAMTÜRK, Alper; Gürel, Sinan (2014-07-01)
Airline operations are subject to frequent disruptions typically due to unexpected aircraft maintenance requirements and undesirable weather conditions. Recovery from a disruption often involves propagating delays in downstream flights and increasing cruise stage speed when possible in an effort to contain the delays. However, there is a critical trade-off between fuel consumption (and its adverse impact on air quality and greenhouse gas emissions) and cruise speed. Here we consider delays caused by such di...
Robust Airline Scheduling with Controllable Cruise Times and Chance Constraints
Duran, A. Serasu; Gürel, Sinan; Akturk, M. Selim (2015-01-02)
Robust airline schedules can be considered as flight schedules that are likely to minimize passenger delay. Airlines usually add an additional time-e.g., schedule padding-to scheduled gate-to-gate flight times to make their schedules less susceptible to variability and disruptions. There is a critical trade-off between any kind of buffer time and daily aircraft productivity. Aircraft speed control is a practical alternative to inserting idle times into schedules. In this study, block times are considered in...
Integrated aircraft and passenger recovery with cruise time controllability
Arikan, Ugur; Gürel, Sinan; Akturk, M. Selim (Springer Science and Business Media LLC, 2016-01-01)
Disruptions in airline operations can result in infeasibilities in aircraft and passenger schedules. Airlines typically recover aircraft schedules and disruptions in passenger itineraries sequentially. However, passengers are severely affected by disruptions and recovery decisions. In this paper, we present a mathematical formulation for the integrated aircraft and passenger recovery problem that considers aircraft and passenger related costs simultaneously. Using the superimposition of aircraft and passeng...
An integrated approach for airline scheduling, aircraft fleeting and routing with cruise speed control
Gurkan, Huseyin; Gürel, Sinan; Akturk, M. Selim (2016-07-01)
To place an emphasis on profound relations among airline schedule planning problems and to mitigate the effect of unexpected delays, we integrate schedule design, fleet assignment and aircraft routing problems Within a daily planning horizon while passengers' connection service levels are ensured via chance constraints. We propose a nonlinear mixed integer programming model due to the nonlinear fuel consumption and CO2 emission cost terms in the objective function, which is handled by second order conic ref...
Integrated aircraft-path assignment and robust schedule design with cruise speed control
Safak, Ozge; Gürel, Sinan; Akturk, M. Selim (2017-08-01)
Assignment of aircraft types, each having different seat capacity, operational expenses and availabilities, critically affects airlines' overall cost. In this paper, we assign fleet types to paths by considering not only flight timing and passenger demand, as commonly done in the literature, but also operational expenses, such as fuel burn and carbon emission costs associated with adjusting the cruise speed to ensure the passenger connections. In response to flight time uncertainty due to the airport conges...
Citation Formats
U. ARIKAN, S. Gürel, and M. S. Akturk, “Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control,” TRANSPORTATION SCIENCE, pp. 1259–1287, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42982.